• Title/Summary/Keyword: water input-output

Search Result 290, Processing Time 0.032 seconds

Comparison of Wedge Factors of Dynamic Wedge and Physical Wedge (기능상쐐기와 물질쐐기의 쐐기인수의 비교)

  • Kim Jae Sung;Kang Wee-Saing
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • Even though the wedge factor was defined by ICRU, RTPS uses other definition different from the wedge factor to consider the wedge effect to correct dose. Because the factors with different concept are defined in a very different way, replacement of different factor could make severe error of dose and is unacceptable because their values are very different from each other. Radiotherapy machine installed in department includes physical wedges and function of dynamic wedge by upper jaws, and Eclipse and Pinnacle$^{3}$ such as RTPS are used. The wedge factors, relative wedge output factors and wedge field output factors of physical wedges and dynamic wedges were measured by an ionization chamber in water phantom. They are analyzed and compared in according to wedge position, field size, wedge angle, X-ray quality, measurement condition. Wedge factor, relative wedge output factors and wedge field output factors of dynamic wedges comparing physical wedges have an effect of several factors. Main factors effecting to the factors of dynamic wedges were field size and wedge angle. Beam quality of X-ray introduces a few effect to the factors. Because the factors related to wedge and defined with different concepts are different from each other, to reduce dose error it should be input by values proper to RTPS.

  • PDF

Analyzing the impact of increase in energy price on the general price level (에너지원별 가격조정의 물가파급효과 분석)

  • Lim, Seul-Ye;Song, Tae-Ho;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.376-385
    • /
    • 2013
  • There are conflicts about energy price increase among government, producer, and consumer. The supplier insists on price increase for escaping running a deficit and business continuity, but the consumer concerns about worsening profitability and price rise. This study investigates the effects of energy rate increase on national economy using input-ouput(I-O) analysis. This study attempts to analyze the effects of national economy due to Coke and hard-coal, Naphtha, Gasoline, Kerosene, Light oil, Heavy oil, Liquefied petroleum gas, Electric utilities, Manufactured gas supply and Steam and hot water supply (using input-output table for the year 2011, Korea.) The results of the sectoral price changes due to a 10% increase in energy price that is obtained from the Leontief price model are presented in article. The result of this analysis is presented: The impact of the 10% increase in electricity rate on the general price level is estimated to be 0.2196%. In case of Kerosene, the impact is 0.1222%. It shows that Electric utilities are approximately 18 times larger price inducing effect as Kerosene. Also, this study indicates 3 years results sequentially to make it possible to observe trend. Then, study suggests balancing price by making each energy source adjusted.

Directions towards sustainable agricultural systems in Korea

  • Kim, Chang-Gil
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.3-3
    • /
    • 2017
  • The question of how to establish sustainable agricultural systems has become as prominent as questions related to water, energy and climate change. High input/high output agriculture has brought with it many adverse effects; the massive deterioration of soil and water in both quantity and quality, increased greenhouse gas emissions and an increased prevalence of unsafe foods. Additionally, urbanization and climate change has worsened the shortage of farmland and reduced the supply of agricultural water. Given these challenges, maintaining, conserving and efficiently using agri-environmental resources, through fostering of sustainable agriculture, have emerged as key tasks in solving these problems. What is needed therefore is research, based on systematic and comprehensive empirical analyses, that can propose plans and methods for establishing an appropriate sustainable agricultural system. The empirical analysis of sustainable agricultural system is approached separately from economic, environmental and social aspects. An analysis of environment effect reveals that the available phosphate level is 1.3~2.1 times greater than the optimal amount in rice paddies, upland fields and orchards. Further examination has revealed that the excess nutrient is polluting both ground water and surface water. Analytical results for economic feasibility show that factors of production have been invested heavily in the rice crop. Under these conditions, sustainable agriculture, including low-input agriculture, appears to be a possible alternative that will facilitate simultaneous improvements in both economic feasibility and environment effects. Analysis results for sociality reveal that social factors include the value of producer, association and interior networks. Social conditions are comprised of leadership, consumers' awareness, education and conflict solutions. In addition, analysis as to the degree investments contribute to improving agricultural value added has revealed that the direct payment program is the most effective instrument. Experts confirm that economic feasibility can be improved by scientific and well-reasoned nutrient management on the basis of soil testing. Farmers pointed to 'economic factors' as being the largest obstacle to switching to the practice of sustainable agriculture. They also indicate 'uncertainty with regards to sustainable agriculture technology' as an impediment to practicing sustainable agriculture. Even so, farmers who believe environmental and regional issues to be the most pressing problems have expanded their practice of sustainable agriculture. The keys to establishing sustainable agriculture system are classified into the following four aspects. Firstly, from an economic aspect, the research indicates that agricultural policy needs to be integrated with environmental policy and that the function of market making based on the value chain needs to be revitalized. Secondly, from an environmental aspect, there is a need for an optimal resource management system to be established in the agricultural sector. In addition, sustainable agriculture practice will need to be extended with attendant environmentally-friendly and sustainable intensive technology also requiring further development. Thirdly, from a social aspect, green agriculture management needs to be fostered, technology and education extended, and social conflict mediated. Lastly, from a governance aspect, it will be necessary to strengthen good governance, assign and share suitable roles and responsibilities, build a cooperation system and utilize community supported agriculture.

  • PDF

Water Treatment Using Constructed Wetlands and Research Perspectives in Korea (인공습지를 이용한 수처리 효율 및 향후 연구제언)

  • Gang, Ho-Jeong;Song, Geun-Ye
    • Journal of Wetlands Research
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2004
  • More than 1000 natural and constructed wetlands have been used to improve water quality. The general results showed that the highest removal efficiency was 84% for BOD and the lowest one was 48% for total nitrogen concentration. In addition, total phosphous removal efficiency was 67%, and the removal efficiencies are related to inflow loading. Researches donducted in Korea have focused on input-output mass balance and uptake by aquatic plant. As such little information if available about complex processes regulating water quality and role of microbes. Therefore, to determine the optimal design for construct, and methods to operate constructed wetland, researches about complex mechanisms of contaminant removal and interdisciplinary researches are necessary.

  • PDF

The Nitrogen Behavior and Budget in Lake Paldang (팔당호의 질소거동과 수지)

  • Lee, Jangho;Park, Hae-Kyung;Lee, Kyoo;Kim, Eunmi
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.71-80
    • /
    • 2010
  • We studied the nitrogen behavior and budget of Lake Paldang from March to December 2008. The particulate nitrogen (PN) concentrations ranged from 7 to 13% of the total nitrogen concentration (TN) in the stream inflows, the downstream outflow, and the lake water. The nitrate nitrogen ($NO_3-N$) concentration ranged from 67 to 78% of the TN. In the three rivers of Lake Paldang, Gyeongan River (In3 site) had the highest average of the TN, 5.037 mgN/L, but North Han River (In2 site) had the lowest average TN, 1.683 mgN/L. South Han River (In1 site) had the average TN of 2.399 mgN/L. In the dam discharge, TN showed the average 2.063 mgN/L. In the lake water, L4 site (Gyeongan River area) had the highest average TN, 3.781 mgN/L, but L3 site (North Han River) had the lowest average TN, 1.587 mgN/L. Total input of nitrogen loads to Lake Paldang was about 30,875 ton/year in 2008. Inflow rivers contributed 30,643 ton/year (South Han River: 18,111 ton/year (59%), North Han River: 11,333 ton/year (37%), and Gyeongan River: 1,199 ton/year (4%)). The atmospheric deposition had 135 ton/year, the nitrogen release from the bottom sediments had 88 ton/year, and macrophytes had 9 ton/year. Total output of nitrogen loads from Lake Paldang was about 31,256 ton/year. The downstream from dam contributed 29,877 ton/year, and the sediment deposition was 1,379 ton/year.

A Study for searching optimized combination of Spent light water reactor fuel to reuse as heavy water reactor fuel by using evolutionary algorithm (진화 알고리즘을 이용한 경수로 폐연료의 중수로 재사용을 위한 최적 조합 탐색에 관한 연구)

  • 안종일;정경숙;정태충
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1997
  • These papers propose an evolutionary algorithm for re-using output of waste fuel of light water reactor system in nuclear power plants. Evolutionary algorithm is useful for optimization of the large space problem. The wastes contain several re-useable elements, and they should be carefully selected and blended to satisfy requirements as input material to the heavy water nuclear reactor system. This problem belongs to a NP-hard like the 0/1 Knapsack problem. Two evolutionary strategies are used as a, pp.oximation algorithms in the highly constrained combinatorial optimization problem. One is the traditional strategy, using random operator with evaluation function, and the other is heuristic based search that uses the vector operator reducing between goal and current status. We also show the method, which performs the feasible teat and solution evaluation by using the vectorized data in problem. Finally, We compare the simulation results of using random operator and vector operator for such combinatorial optimization problems.

  • PDF

Predicting flux of forward osmosis membrane module using deep learning (딥러닝을 이용한 정삼투 막모듈의 플럭스 예측)

  • Kim, Jaeyoon;Jeon, Jongmin;Kim, Noori;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.93-100
    • /
    • 2021
  • Forward osmosis (FO) process is a chemical potential driven process, where highly concentrated draw solution (DS) is used to take water through semi-permeable membrane from feed solution (FS) with lower concentration. Recently, commercial FO membrane modules have been developed so that full-scale FO process can be applied to seawater desalination or water reuse. In order to design a real-scale FO plant, the performance prediction of FO membrane modules installed in the plant is essential. Especially, the flux prediction is the most important task because the amount of diluted draw solution and concentrate solution flowing out of FO modules can be expected from the flux. Through a previous study, a theoretical based FO module model to predict flux was developed. However it needs an intensive numerical calculation work and a fitting process to reflect a complex module geometry. The idea of this work is to introduce deep learning to predict flux of FO membrane modules using 116 experimental data set, which include six input variables (flow rate, pressure, and ion concentration of DS and FS) and one output variable (flux). The procedure of optimizing a deep learning model to minimize prediction error and overfitting problem was developed and tested. The optimized deep learning model (error of 3.87%) was found to predict flux better than the theoretical based FO module model (error of 10.13%) in the data set which were not used in machine learning.

A Study about Water Footprint Evaluation of Industrial Sectors (국내 산업들의 물 발자국 산정에 관한 연구)

  • Kim, Junbeum;Kang, Hun;Park, Kihak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.400-406
    • /
    • 2013
  • Water footprint means the direct and indirect water resource amount used for the life cycle of different goods, services and industries. In this study, the direct and indirect water resource consumption in industrial sectors were calculated by using water footprint evaluation method. As a result, agriculture and marine product industry takes part of 93% of whole water resource amount, showing the greatest amount of basic unit of water coefficient (637 $m^3/won$) following by petroleum and cool products industry of about 13 $m^3/won$. In the agriculture and marine product industry, the direct water consumption was only 25 billion $m^3$ compared to the indirect water, which is 130 billion $m^3$. The next highest industry was chemical product industry, which consists of 2 billion $m^3$ of the direct water and 4.5 billion $m^3$ of the indirect water consumption. In case of industries which have high direct water, it would be more effective to reduce amount of water related to the industry than to reduce water in actual process. This water footprint of each industry and evaluation method will be useful tool and method for development of national water management policy and regulation.

The Comparison of Water Budget and Nutrient Loading from Paddy Field According to the Irrigation Methods (관개방법에 따른 논에서의 수문 및 수질특성에 미치는 영향)

  • Jeon, Ji-Hong;Choi, Jin-Kyu;Yoon, Kwang-Sik;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.118-127
    • /
    • 2005
  • The comparison of water balance and nutrient loading from paddy field with different irrigation management were carried out during 1999 ${\sim}$ 2002 at two different sites; one is irrigated with groundwater and the other is irrigated with surface water. For the surface water irrigated paddy field, irrigation was performed continuously during growing season. Whereas, initial irrigation with groundwater was applied during initial growing season, and the ponded water depth was maintained by natural precipitation since initial irrigation. The runoff frequency of groundwater irrigated paddy field was less than that of surface water irrigated paddy field. The nutrient concentration of ponded water was high by fertilization at early cultural periods, so reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Amount of irrigation water to surface water irrigated paddy field was higher than to groundwater irrigated paddy field and evapotranspiration was similar because it is influenced by climate. Overall input in and output from paddy field irrigated with goundwater were less than that with surface water. This study indicate that efficient water management can reduce surface drainage outflow, save water, and protect water quality. It might be important BMPs for paddy field.

Estimation of Kinetic Coefficient and Assimilated Nutrients Mass in SBR Process (연속회분식 반응 공정에서 동역학적 계수 및 미생물합성에 사용된 영양물질 산정)

  • Ji, Dae-Hyun;Shin, Sang-Woo;Lee, Kwang-Ho;Lee, Jae-Kune
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.607-612
    • /
    • 2007
  • In this study, we investigated the variations of the kinetic coefficients and Chemical Oxygen Demand (COD), N and P mass used for assimilation of a sequencing batch reactor (SBR) system with the variation of SRTs; SRTs of 7.5, 10.0, 12.5, 15.0 and 20.0 days were tested in one cycle of SBR operation to determine the optimum conditions for the operation of the SBR and estimate its COD, nitrogen and phosphorus removal efficiencies. The SBR system was operated under the conditions as follows: an operation time of 6 hours per cycle, a hydraulic retention time (HRT) of 12 hours, an influent COD loading of $0.4kg/m^3/day$, and an influent nitrogen loading of $0.068kgT-N/m^3/day$. The yield coefficient (Y) and decay rate coefficient ($k_d$) were estimated to be 0.4198 kgMLVSS/kgCOD and $0.0107day^{-1}$ by calculating the removal rate of substrate according to the variation of SRT. Considering total nitrogen amount removed by sludge waste process, eliminated by denitrification, and in clarified water effluent with reference to 150 mg/cycle of influent nitrogen amount, the percentage of nitrogen mass balance from the ratio of the nitrogen amount in effluent (N output) to that in influent (N input) for Runs 1~5 were 95.5, 97.0, 95.5, 99.5, and 95.5%, respectively, which is well accounted for, with mass balances close to 100%.