• Title/Summary/Keyword: water erosion

Search Result 988, Processing Time 0.026 seconds

Erosion Characteristics of Kaolinite (카올리나이트의 침식특성)

  • Lee, Ju-Hyung;Kwak, Ki-Seok;Park, Jae-Hyeon;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.533-537
    • /
    • 2004
  • The erodibility of soil is an important factor to scour, especially in fine-grained soils. In this study, the erosion characteristics of kaolinite are quantified through the scour rate tests using the Erosion Function Apparatus called EFA. The basic soil property tests are also performed. The kaolinite samples are prepared by mixing with distilled water and formed to the designed maximum consolidation pressure of 60, 110, 160, 240, 360kPa, respectively. The results of the scour rate tests are presented in a format of a plot showing the relationship between erosion rates and shear stresses. Erosion properties of kaolinite showed a striking contrast according to the maximum consolidation pressure, and a correlation was established between the erosion properties of kaolinite and the soil properties; water content, undrained shear strength, dry density.

  • PDF

Development and demonstration of an erosion-corrosion damage simulation apparatus (배관 침부식 손상 연속모사 장비 개발 및 실증)

  • Nam, Won Chang;Ryu, Kyung Ha;Kim, Jae Hyoung
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

Erosion Characteristics of Kaolinite with respect to Contents of Silt (실트함량에 따른 카올리나이트의 침식특성 평가)

  • Lee, Ju-Hyung;Park, Jae-Hyun;Chung, Mun-Kyung;Kwak, Ki-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.593-596
    • /
    • 2008
  • The scour phenomenon involves the erosive potential of flowing water and the relative ability of the soil to resist erosion. The scour phenomenon in cohesive soils is much different from that in non-cohesive soils. Granular soils resist erosion by their buoyant weight and the friction between the particles. The soil particles are dislodged individually from the bed under the action of the eroding fluid. Scour in cohesive soils is much slower and more dependent on soil properties than that in non-cohesive soils. Therefore the analysis models for estimating erosion characteristics of cohesive soils should consider not only flowing water but also the relative ability of the soil to resist erosion. In this study, erosion characteristics for the clay-silt mixed soil will be analyzed as a fundamental study for development of bridge scour analysis and design system considering scour resistance capacity of a soil. For this analysis, the relationship between scour characteristics and soil properties was evaluated through scour rate test with Kaolinite samples remolded using various loading and contents of silt.

  • PDF

Water Quality Analysis of In-stream and Reservoir Water in Erosion Control Dams in the Nakdong River Basin (낙동강유역 불투과형 사방댐의 계류수 및 저류수 수질 특성 분석)

  • Li, Qiwen;Eu, Song;Lee, Eun Jai;Lee, Ye Eun;Kim, Min Sik;Im, Sang Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.329-340
    • /
    • 2019
  • Water pollution in erosion control dams is a major issue for forest watershed management, but the effects of erosion control dams on water quality remain poorly understood. In this study, water quality data from streams and dam reservoirs were collected over the Nakdong river basin. Monitored data were further analyzed to examine the relationship between watershed characteristics and water quality. Of the total 43 erosion control dams, less than 10% had lower water quality that was not suitable for agricultural use. TOC and oxygen demand, SS and turbidity, SS and Chl-a, and Chl-a and turbidity showed high correlations (p < 0.01) both in stream water and in detained water. BOD and SS, BOD and Chl-a, BOD and turbidity, and TOC and Chl-a showed high correlations only in stream water. Overall, the results demonstrated that for most erosion control dams the water quality was relatively good. In addition, the quality of downstream water is somewhat affected by the water detained by erosion control dams, in limited ways.

Impact of landuse and slope on soil erosion (토지이용과 경사가 토양침식량 미치는 영향)

  • Kim, Seong Won;Lee, Dae Eop;Yu, Wan Sik;Lee, Gi ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.337-337
    • /
    • 2020
  • 기후, 지형, 토지이용 등 다양한 환경요인들의 조건에 따라 동일한 강수량에도 표토침식량이 다르게 발생한다. 지형과 토지이용은 인위적인 개발에 의해 크게 변화될 수 있지만 인위적인 요소를 제외한다면, 지형변화는 매우 느리게 발생하며 토지이용은 계절적으로 변화하게 된다. 우리나라 대부분의 토양침식은 강우-유출에 의한 침식(water erosion)으로 지표를 흘러가는 유체에 함께 표토를 구성하는 토양 입자들이 이동하면서 발생하게 되는데 지표면을 덮고 있는 피복과 사면경사에 큰 영향을 받게 된다. 본 연구에서는 강우와 지표흐름을 고려할 수 있는 물리적 기반 토양침식모형을 이용하여 토지이용과 경사에 따라 토양침식량과 공간적 침식분포가 어떻게 변화되는지 분석하고자 하였다.

  • PDF

Investigating Ephemeral Gully Erosion Heads Due To Overland Flow Concentration in Nonpoint Source Pollution Control (비점오염원 관리에서 지표수 집중화로 인한 구강 침식점 조사 방법 연구)

  • Kim, Ik-Jae;Son, Kyong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.454-458
    • /
    • 2007
  • Nonpoint source (NPS) pollution is a serious problem causing the degradation of soil and water quality. Concentrated overland flow is the primary transport mechanism for a large amount of NPS pollutants from hillslope areas to downslope areas in a watershed. In this study, a soil erosion model, nLS model, to identify transitional overland flow regions (i.e., ephemeral gully head areas) was developed using the kinematic wave overland flow theory. Spatial data, including digital elevation models (DEMs), soil, and landcover, were used in the GIS-based model algorithm. The model was calibrated and validated using gully head locations in a large agricultural watershed, which were identified using 1-m aerial photography. The model performance was better than two previous approaches; the overall accuracy of the nLS model was 72 % to 87 % in one calibration subwatershed and the mean overall accuracy was 75 to 89 % in four validation subwatersheds, showing that the model well predicted potential transitional erosion areas at different watersheds. However, the user accuracy in calibration and validation was still low. To improve the user accuracy and study the effects of DEM resolution, finer resolution DEMs may be preferred because DEM grid is strongly sensitive to estimating model parameters. Information gained from this study can improve assessing soil erosion process due to concentrated overland flow as well as analyze the effect of microtopographic landscapes, such as riparian buffer areas, in NPS control.

  • PDF

The selection of soil erosion source area of Dechung basin (대청호유역의 토사유실 원인지역 선정)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1997-2002
    • /
    • 2007
  • This study selected soil erosion source area of Dechung basin by soil erosion estimation model and field survey for effective soil conservation planning and management. First, unit soil erosion amount of Dechung basin is analyzed using RUSLE (Revised Universal Soil Loss Equation) model based on DEM (Digital Elevation Model), soil map, landcover map and rainfall data. Soil erosion model is difficult to analyze the tracing route of soil particle and to consider the characteristics of bank condition and the types of crop, multidirectional field survey is necessary to choice the soil erosion source area. As the result of analysis of modeling value and field survey, Mujunamde-, Wondang-, Geumpyong stream are selected in the soil erosion source area of Dechung basin. Especially, these areas show steep slope in river boundary and cultivation condition of crop is also weakness to soil erosion in the field survey.

  • PDF

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

Development and Application of a Physics-based Soil Erosion Model (물리적 표토침식모형의 개발과 적용)

  • Yu, Wansik;Park, Junku;Yang, JaeE;Lim, Kyoung Jae;Kim, Sung Chul;Park, Youn Shik;Hwang, Sangil;Lee, Giha
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.66-73
    • /
    • 2017
  • Empirical erosion models like Universal Soil Loss Equation (USLE) models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well utilizing big data related to climate, geography, geology, land use, etc within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models are still powerful tools to distinguish the erosion-prone areas at large scale, but physics-based models are necessary to better analyze soil erosion and deposition as well as the eroded particle transport. In this study a physics-based soil erosion modeling system was developed to produce both runoff and sediment yield time series at watershed scale and reflect them in the erosion and deposition maps. The developed modeling system consists of 3 sub-systems: rainfall pre-processor, geography pre-processor, and main modeling processor. For modeling system validation, we applied the system for various erosion cases, in particular, rainfall-runoff-sediment yield simulation and estimation of probable maximum sediment (PMS) correlated with probable maximum rainfall (PMP). The system provided acceptable performances of both applications.

Erosion-Corrosion Behavior of Power Plant Pipe Caused by Hot Feed Water (고온 급수에 의한 파워 플랜트 배관 침식-부식 거동)

  • Bang, Sung-Ho;Lee, Jin-Won;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.739-745
    • /
    • 2013
  • In this study, we tried to define the erosion-corrosion behavior together with the resulting effects on a pipe that is a part of a feed water circulation system according to the pipe size and hot feed water environment. An erosioncorrosion analysis was performed through the Hayduk and Minhas model based on the chemical reaction between iron and oxygen, an essential corrosive factor. The erosion-corrosion rate against the pipe diameter and feed water temperature was then evaluated by means of finite element analysis using ABAQUS. As shown in the results, the feed water temperature was the main factor influencing the erosion-corrosion rate; in particular, it was expected that the thickness of 316 stainless steel would decrease by $2.59{\mu}m$ every year in a hot water environment at $290^{\circ}C$.