• Title/Summary/Keyword: water environmental management

Search Result 2,968, Processing Time 0.028 seconds

Assessment of Irrigation Efficiency and Water Supply Vulnerability Using SWMM (SWMM 모형을 활용한 평야부 관개효율 및 용수공급 취약성 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Bang, Na-Kyoung;Kim, Han-Joong;An, Hyun-Uk;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.73-83
    • /
    • 2020
  • Agricultural drought is a natural phenomenon that is difficult to observe and quantitatively express, and agricultural water use is high and usage patterns are diverse, so even if there is a lack of rainfall. The frequency and severity of agricultural drought are increased during the irrigation period where the demand for agricultural water is generated, and reasonable and efficient management of agricultural water for stable water supply is required. As one method to solve the water shortage of agricultural water in an unstructured method, it is necessary to analyze the appropriate supply amount and supply method through simulation from the intake works to the canals organization and paddy field. In this study, irrigation efficiency was analyzed for irrigation systems from April to September over the past three years from the Musu Reservoir located in Jincheon-gun, Chungcheongbuk-do and Pungjeon Reservoir located in Seosan-si, Chungcheongnam-do. SWMM (Storm Water Management Model) was used to collect agricultural water, and irrigation efficiency analysis was conducted using adequacy indicators, and water supply vulnerability. The results of the agricultural water distribution simulation, irrigation efficiency and water supply vulnerability assessment are thought to help the overall understanding of the agricultural water supply and the efficient water management through preliminary analysis of the methods of agricultural water supply in case of drought events.

THE CHECKLIST FOR ENVIRONMENTAL-FRIENDLY CONSTRUCTION PROJECT MANAGEMENT IN CONSTRUCTION PHASE

  • Oh, Kyung-Taek;Jung, In-Su;Lee, Chan-Sik
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1522-1527
    • /
    • 2009
  • Construction project is necessary element for human life to upgrade the quality and convenience. However, due to its contradictory nature to the environment conservation, environmental pollution and damage, deterioration of natural scenery, noise/vibration, water quality pollution, etc. caused in the process of construction greatly affect the environment. The purpose of this study is to propose checklist for environment management can be used in construction phase. For this, we went ahead with the research by studying the existing research related to environment-friendly construction project management both at home and abroad, investigation and analysis of environment-related laws and ordinances, and drawing the checklists for natural environment and living environment at the construction phase. As a result, we were able to compile a checklist for nine items including geological features, animals and plants, use of soil, quality of air, water, and soil, construction wastes, noise, vibration, recreation, and sceneries. The checklist is structured in 4 grades and coded so as to allow it to be developed with the use of computer system in future. We hope that the checklist presented in this study will help lead the managers at the construction phase in construction development sustainable from the perspective of environmental conservation.

  • PDF

Study of Snow Depletion Characteristics at Two Mountainous Watersheds Using NOAA AVHRR Time Series Data

  • Shin, Hyungjin;Park, Minji;Chae, Hyosok;Kim, Saetbyul;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.315-324
    • /
    • 2013
  • Spatial information of snow cover and depth distribution is a key component for snowmelt runoff modeling. Wide snow cover areas can be extracted from NOAA AVHRR or Terra MODIS satellite images. In this study eight sets of annual snow cover data (1997-2006) in two mountainous watersheds (A: Chungju-Dam and B: Soyanggang-Dam) were extracted using NOAA AVHRR images. The distribution of snow depth within the Snow Cover Area (SCA) was generated using snowfall data from ground meteorological observation stations. Snow depletion characteristics for the two watersheds were analyzed snow distribution time series data. The decreased pattern of SCA can be expressed as a logarithmic function; the determination coefficients were 0.62 and 0.68 for the A and B watersheds, respectively. The SCA decreased over 70% within 10 days from the time of maximum SCA.

A study on the economical life of large-diameter water pipe: case study in P waterworks (대구경 상수도관로의 경제적수명 산정 연구: P상수도 사례연구)

  • Kim, Kibum;Seo, Jeewon;Choi, Taeho;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.37-45
    • /
    • 2018
  • This study develops a model to estimate the economic life of the large-diameter water supply pipeline in Korea by supplementing existing methods used to perform similar calculations. To evaluate the developed methodology, the model was applied to the actual target area with the conveyance pipe in P waterworks. The application yielded an economic life computation of 39.7 years, considering the cost of damages, maintenance, and renewal of the pipeline. Based on a sensitivity analysis of the derived results, the most important factor influencing the economic life expectancy was the predicted failure rate. The methodology for estimating the economic life of the water supply pipeline proposed in this study is one of the core processes of basic waterworks facility management planning. Therefore, the methods and results proposed in this study may be applied to asset management planning for water service providers.

Establishment of Target Water Quality for TOC of Total Water Load Management System (오염총량관리제도의 TOC 목표수질 설정 방안)

  • Kim, Yong Sam;Lee, Eun Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.520-538
    • /
    • 2019
  • In this study, it was proposed that a method of setting the target water quality for TOC using the watershed model and the load duration curves to manage non-biodegradable organics in the total water load management system. To simulate runoff and water quality of the watershed, the HSPF model is used which is appropriate for urban and rural areas. Additionally, the load duration curve is used to reflect the variable water quality correlated with various river flow rates in preparing the TMDL plans in the U.S. First, the model was constructed by inputting the loads calculated from the pollutant sources in 2015. After the calibration and verification process, the water quality by flow conditions was analyzed from the BOD and TOC simulation results. When the BOD achieved the target water quality by inputting the target year loads for 2020, the median and average values of TOC were proposed for the target water quality. The provisional method of TOC target water quality for the management of non-biodegradable organics, which is one of the challenges of the total water load management system, was considered. In the future, it is expected to be used as basic data for the conversion of BOD into TOC in the total water load management system.

Assessment of the Water Quality of Jungnang Stream by Flow Conditions Using Load Duration Curve (부하지속곡선을 이용한 중랑천의 유량 조건별 수질특성 평가)

  • Choi, Kyung-Wan;Shin, Kyung-Yong;Lee, Hyung-Jin;Jun, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.438-447
    • /
    • 2012
  • Objective: The objective of this study was to suggest a method through which load duration curve was used to assess the achievement of water quality targets in accordance with the criteria for pollutant load depending on flow rate variation. Methods: The stage-discharge curve and flow duration curve of Jungnang Stream were deduced. Using water quality targets and measurement of the stream, the flow duration curve was also drawn. Based on these, the feasibility of achievement of water quality targets in respect to flow rate was assessed. Results: In terms of the load duration curve of the stream, it was observed that excess of criteria for concentrations of $BOD_5$, $COD_{Mn}$ and SS frequently occurred. On the other hand, when the flow rate was low, the concentrations of T-N and T-P exceeded the criteria. Conclusions: Through the load duration curve, the overall water quality of Jungnang Stream was understood. When the flow rate is high, management of point source of $BOD_5$, $COD_{Mn}$ and SS is needed to achieve water quality targets for Jungnang Stream. On the other hand, when the flow rate is low, the management of non-point source T-N and T-P is necessary to attain the water quality goal.

A Study on the Improvement of Water Quality according to the Pollution Management Plan of Seomjin River Water System (섬진강수계의 오염원 관리방안에 따른 수질 개선에 관한 연구)

  • Won, Chan-Hee
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.514-527
    • /
    • 2018
  • This study formed a scenario to improve a water quality by expecting and analyzing a water quality of Jeollabuk-do Seomjingang water system, so calculated a result. As a result, it was analyzed that a water quality is improved at 15.32 % of the maximum BOD, 7.17 % of T-N, and 62.86 % of T-P according to domestic and livestock cut amount by reinforcing discharge water of sewage disposal plant and improving pollutant management plans. It was analyzed that supplementing various cut plans such as establishment of efficient cut plans, plans to decrease pollution loading amount, plans to increase sewage disposal efficiently, pollutant decrease through an expansion of sewage disposal area, and energy recovery from animal dung of Total Pollutant Load Management System, and developing a study on more efficient improvement plans of water quality by considering natural increase and economic development are efficient in an improvement in a water quality.

Effect of SRI Water Management on the Reduction of Greenhouse-gas Emissions and Irrigation Water Supply in Paddy (논에서 SRI 물관리 방법에 의한 온실가스와 관개용수 저감효과 분석)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Lee, Suin;Choi, Yonghun;Shin, Minhwan;Choi, Joongdae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • Water management impacts both methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from rice paddy fields. Although irrigation is one of the most important methods for reducing $CH_4$ emission in rice production systems it can also $N_2O$ emissions and reduce crop yields. A feasibility study on the system of rice intensification (SRI) methods with respect to irrigation requirements, greenhouse gas (GHG) emissions was conducted for either 2 or 3 years depending on the treatment in Korea. The SRI methods (i.e. SRI and midsummer drainage (MD) with conventional practice (CT)) reduced the irrigation requirement by 49.0 and 22.0 %, respectively. Global warming contribution of GHG to different depending on the type of GHG. Therefore, the emission of $CH_4$ and $N_2O$ shall be converted to Global Warming Potential (GWP). The GHG emission from the conventional practice with midsummer drainage (MD) and the SRI plots, in GWP were reduced by 49.1 and 77.1 %, respectively. Application of SRI water management method could help to improve Korea's water resources and could thus contribute to mitigation of the negative effects of global warming.

Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model (3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석)

  • An, Inkyung;Park, Hyungseok;Chung, Sewoong;Ryu, Ingu;Choi, Jungkyu;Kim, Jiwon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.284-299
    • /
    • 2020
  • Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.

Applicability Analysis of Water Provisioning Services Quantification Models of Forest Ecosystem (산림생태계 수자원 공급서비스 계량화 모형의 국내적용성 분석)

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Song, Cholho;Lee, Jong Yeol;Jeon, Seong Woo;Kim, Joon Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.1-15
    • /
    • 2014
  • Forest ecosystems generate variety of important goods and services for human well-being. As a growing concern of climate change and water shortage, it is necessary to quantify, model and map water balance in forest. In this study, we have analyzed 11 overseas forest water supply models (AIM, ATEAM, CENTURY, (E)SWAT, GUMBO, InVEST, PLM, SAVANNA, WaSSI, WaterGAP, WBM) and compared their scale, input and out data, availability of the models and analyzed the applicability of the models to Korea. As a result, InVEST and WaterGAP model appeared to be applicable for quantifying water provisioning services in Korea. A systematic approach for applying to evaluate water balance in forest was suggested based on our quantification approach.