• Title/Summary/Keyword: water environment

Search Result 13,308, Processing Time 0.042 seconds

Risk Assessment of Micro and Emerging Contaminants in Domestic Effluent Environment: Targeting on 80 First-class substances assigned by Ministry of Environment (미량 및 신종유해물질의 국내 방류 환경에서의 위해성 평가: 환경부 지정 1순위 80종 대상으로)

  • Lee, Jai-Yeop;Park, Saerom;Kim, Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.501-509
    • /
    • 2021
  • In 2018, total 263 micro and emerging contaminants were selected as target substances by the Ministry of Environment, and 80 of them were first-class substance including endocrine disruptors, residual Pharmaceuticals and Personal Care Products (PPCPs), residual organic pollutants, pesticides and heavy metals. In this study, in order to evaluate the Hazard Quotient (HQ) of the 80 types in the domestic water environment the concentration of discharged effluent and nearby water environment reported by Korean institutes since 2010 was investigated. There were 45 substances reported to be detected, and Measurement Environment Concentration (MEC) were obtained by collectively converting them into water environment concentration. For biotoxicity, half maximal Effective Dose (EC50) to Daphnia magna, a water fleas species widely adopted in Material Safety Data Sheet (MSDS) was applied. As for the biotoxicity level, the Predicted No-Effect Concentration (PNEC) was obtained by applying the Assessment Factor (AF) and the HQ was derived by dividing it from the MEC. As a result of calculating the HQ, more than 1 substances were Cabamazepine, Mefenamic acid, Acetaminophen, Ibuprofen, Nonylphenol, Nickel, Erythromycin, Acetylslic acid, etc. Meanwhile, perfluorinated compounds were identified as hazardous substances in the water env ironment, with 5 out of 14 species included in the 20 ranks of first-class substance.

Organic Matters Budget and Movement Characteristic in Lake Hoengseong (횡성호의 유기물 수지 및 거동 특성)

  • Joung, Seung-Hyun;Park, Hae-Kyung;Yun, Seok-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2012
  • Organic matters budget in Lake Hoengseong were monthly investigated from April 2009 to November 2009. The intense rainfall occurred at between July and August and the hydrological factors were highly varied during the rainfall season. By the concentrated rainfall, the elevation, influx and efflux were sharply increased and the turbid water was also flowed into the middle water column in Lake. The inflow of turbid water increased the nutrient concentrations in water body and this appears to stimulate of phytoplankton regard as the primary productivity of influx of organic matter. Monthly average concentration of dissolved organic carbon (DOC) was generally higher than the particulate organic carbon (POC) concentration in Lake, but Temporal and spatial variation of POC concentration was higher than DOC and the maximum POC concentration was recorded in surface water in August, had the highest phytoplankton biomass. Organic carbon concentration in inflow site was rarely changed during the dry season, but the concentration was rapidly increased by the initial intense rainfall. In organic matters budget, the most of the organic matters was inflowed from the inflow site at rainfall season. Especially, the influx of allochthonous organic matters during the intense rainfall was 72.4% in the total influx organic matters.

Contributions to the Impaired Water Bodies by Hydrologic Conditions for the Management of Total Maximum Daily Loads (수질오염총량관리 목표수질 초과지역에 대한 유황별 초과기여도 분석)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.574-581
    • /
    • 2012
  • It is important to analyze the status of water quality with relation to the stream flow to attain water quality goal more effectively in the unit watersheds for the management of Total Maximum Daily Loads (TMDLs). This study developed a flow duration-water quality distribution graph to figure out water quality appearances on the flow variation and analyzed contributions of water quality observations to the impaired water bodies quantitatively by hydrologic conditions. Factors relating to water quality variation can be analyzed more precisely and assessed on the base of quantified contributions. It is considered that this approach could be utilized to establish a more effective plan for the water quality improvement including the prioritization of pollution reduction options.

Analysis of Ecohydrologic Characteristics based on Development of Riparian Zone (수변 식생대 조성에 따른 생태수문학적 특성 분석)

  • Kim, Nam Won;Kim, Jitae;Chung, Il Moon;Lee, Jeongwoo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.910-915
    • /
    • 2009
  • The ecohydrologic characteristics according to planting in riparian zone for the riparian restoration are analyzed in this research. The ecohydrologic components due to land use change in riparian zone from existing land cover to planted area such as pasture and wildrye are simulated in the test basin with the integrated SWAT-MODFLOW model. After analysis of change of the hydrologic properties such as surface flow, lateral flow, transpiration and soil water in riparian zone, it is revealed that soil water is one of the key factors and planting of wildrye can increase soil water in riparian zone. The simulation performance of the SWAT-MODFLOW model is validated in this study and it is expected that this model can be used to evaluate various riparian restoration scenarios.

Watershed Management Measures for Water Quality Conservation of the Hwaseong Reservoir using BASINS/HSPF Model (BASINS/HSPF 모델을 이용한 화성호 수질보전을 위한 상류 유역 수질개선방안 연구)

  • Kang, Hyeongsik;Jang, Jae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • HSPF model based on BASINS was applied to analyze effects of watershed management measures for water quality conservation in the Hwaseong Reservoir watershed. The model was calibrated against the field measurements of meteorological data, streamflow and water qualities ($BOD_5$, T-N, T-P) at each observatory for 4 years (2007-2010). The water quality characteristics of inflow streams were evaluated. The 4 scenarios for the water quality improvement were applied to inflow streams and critical area from water pollution based on previous researches. The reduction efficiency of point and non-point sources in inflow streams was evaluated with each scenario. The results demonstrate that the expansion of advanced treatment system within wastewater treatment plants (WWTPs) and construction of pond-wetlands would be great effective management measures. In order to satisfactory the target water quality of reservoir, the measures which can control both point source and non-point source pollutants should be implemented in the watershed.

Selection of Priority Management Target Tributary for Effective Watershed Management in Nam-River Mid-watershed (남강 중권역의 효율적인 유역관리를 위한 중점관리 대상지류 선정)

  • Jung, Kang-Young;Kim, Gyeong-Hoon;Lee, Jae-Woon;Lee, In Jung;Yoon, Jong-Su;Lee, Kyung-Lak;Im, Tae-Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.514-522
    • /
    • 2013
  • The major 24 tributaries in Nam-River mid-watershed were monitored for discharge and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. According to the analytical results of discharge and water quality monitoring data of 24 tributaries, the mean value of discharge below $0.1m^3/s$ was 62.5% among the monitored tributaries and it mostly exceeded the water quality standards of Nam-river mid-watershed ($BOD_5$ = 3 mg/L, T-P = 0.1 mg/L over). According to the stream grouping method and the water quality delivery load density ($kg/day/km^2$) based on the results of tributary discharge and water quality monitoring, the tributary watersheds for improving the water quality were selected. In the Nam-River mid-watershed, tributaries in the GaJwaCheon, HaChonCheon catchment (Group D, $BOD_5$ = 3 mg/L over) and in the UirYeongCheon, SeokGyoCheon catchment (Group A, T-P = 0.1 mg/L over), which have a small flow (and/or large flow) and a high concentrations of water pollutants. The various water quality improving scheme for tributaries, in accordance with the reduction of potential point source pollution by living sewage and livestock wastewater, should be established and implemented.

Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin (낙동강 유역의 수질관리를 위한 유역모델링 적용 연구)

  • Jang, Jae-Ho;Ahn, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Comparison of Changes in Upstream and Downstream Water Quality of Tributary Rivers: Gyeseong-stream and Hwapo-stream in Nakdongmiryang Watershed (지류하천의 상·하류 수질변화 비교: 낙동밀양 중권역 내 계성천 화포천을 대상으로)

  • Shim, Kyuhyun;Kim, Gyeonghoon;Kim, Seongmin;Kim, Youngseok;Kim, Jin-pil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.445-452
    • /
    • 2020
  • Tributary is a part of life space for people and a very important place that accommodates rest recreation and other daily activities. absolutely insufficient basic data about water quality and flow rate are available for basin management. Efficient water and basin management systems, which are also supported by local residents can be established by securing such basic data of major tributaries in the Nakdong river system. In this study, the fluctuation characteristics of upstream and downstream water pollution levels were compared using the measurement results of the water environment measurement network and the tributary monitoring project for the gyeseong-stream and Hwapo-stream in the Nakdong-miryang watershed. In 2017, when water pollution is the highest, it was confirmed that the annual average rainfall was the lowest. Although the upstream and downstream water quality tendencies of the Gyeseong-stream are similar, the water quality concentrations of the Gyeseong-stream are relatively different. But although the Hwapo stream has various causes of pollution, there was not much difference in the level of pollution between the upper and lower streams. In addition, both rivers need the ability to purify rivers by securing sufficient water for river maintenance, and if the correlation between water quality items can be inferred through continuous monitoring of tributaries where the aspect of water quality change is unclear, water quality management Determined to be efficient operation.

Water Quality Variation and Corrosion Index Characteristics of Underground Reservoir in Apartment (공동주택 지하저수조의 수질변화 및 부식성 특성)

  • JunYoung, Jang;JooWon, Kim;YuHoon, Hwang;KiPal, Kim;HyunSang, Shin;ByungRan, Lim
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.275-281
    • /
    • 2022
  • To maintain water quality after water treatment, monitoring whether the quality of treated tap water quality changes is essential. However, current investigations are insufficient to prevent secondary contamination in drinking water supply systems. This study investigated Gyeonggi's e apartment where a red water problem occurred and monitored the water quality and corrosiveness of the overall water supply system to the apartment from June 2021 to April 2022. In a comparison of drinking water quality after water treatment and the influent of the reservoir, turbidity and heavy metal concentrations were increased and residual chlorine was decreased due to increases in temperature. Correlation analysis and principal component analysis (PCA) indicated that a low level of residual chlorine may cause the abscission of Mn2+ and Fe2+ through microorganism activation, which also causes a high level of turbidity. The corrosion index (LI) in the influent of the reservoir tank was increased due to Ca2+ and temperature. These results indicate that the corrosiveness of drinking water and the deterioration of drinking water quality were mainly increased between the drinking water treatment plant and the reservoir tank's influent. The findings provide clear evidence that it is essential to manage water supply systems and reservoir tanks to prevent the secondary contamination of drinking water.