• 제목/요약/키워드: water dynamics

검색결과 1,360건 처리시간 0.024초

한국 환경정책의 발달동인 : 정책의 창문은 어떻게 열렸는가? (Dynamics of Environmental Policy Development in Korea : How did the Policy Windows have been opened?)

  • 이정전;정회성
    • 환경정책연구
    • /
    • 제2권1호
    • /
    • pp.1-29
    • /
    • 2003
  • This paper examines the dynamics of environmental policy development in Korea by reviewing some of the ways on how the policy windows have been opened. There are a lot of theoretical arguments about the major factors influencing policy development or changes. Many scholars have believed that severe pollution accidents or salient environmental episodes might have been the main motivation of environmental policy development. This line of argument seems valid, especially with the water pollution control policy in Korea. Water pollution control programs had rapidly expanded along with the series of water pollution accidents in the tap water sources from the late 1980s to mid-1990s. However, regarding other major env. issues, various other factors have played more important roles in the development of the relevant policies. In case of air pollution control policy international sport events such as, 1986 Asian Games, 1988 Summer Olympics, and 2002 World Cup Competition, have contributed for the development. The municipal solid waste management policy partly owed its development to the introduction of local autonomy system in the mid-1990s. Even the foreign currency crisis occurring in December 1997 helped the policy paradigm shift from rigid supply-oriented to soft demand-oriented approaches. After closely looking at the dynamics of environmental policy development in Korea, this paper tries to identify the logical background of the observed outcomes.

  • PDF

Coil-to-globule transition of thermo-responsive γ-substituted poly (ɛ-caprolactone) in water: A molecular dynamics simulation study

  • Koochaki, Amin;Moghbeli, Mohammad Reza;Nikkhah, Sousa Javan
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1313-1319
    • /
    • 2018
  • The coil-to-globule behavior of poly{${\gamma}$-2-[2-(2methoxyethoxy)ethoxy]ethoxy-3-caprolactone} (PMEEECL) as a ${\gamma}$-substituted poly (${\varepsilon}$-caprolactone) was investigated via atomistic molecular dynamics (MD) simulation. For this purpose, radius of gyration, end-to-end distance and radial distribution function of the chain in the presence of water were calculated. Consequently, the lower critical solution temperature (LCST) of PMEEECL chain at which the coil-to-globule transition takes place, was determined in each calculated parameter curve. The simulation results indicated that the LCST of PMEEECL was occurred at close to 320 K, which is in a good agreement with previous experimental results. Additionally, the appearance of sudden change in both Flory-Huggins interaction parameter (${\chi}$) and interaction energy between the PMEEECL chain and water molecules at about 320 K confirmed the calculated LCST result. The radial distribution function (RDF) results showed that the affinity of the PMEEECL side chain to water molecules is lower than its backbone.

Numerical investigation of two-component single-phase natural convection and thermal stratification phenomena in a rod bundle with axial heat flux profile

  • Grazevicius, Audrius;Seporaitis, Marijus;Valincius, Mindaugas;Kaliatka, Algirdas
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3166-3175
    • /
    • 2022
  • The most numerical investigations of the thermal-hydraulic phenomena following the loss of the residual heat removal capability during the mid-loop operation of the pressurized water reactor were performed according to simplifications and are not sufficiently accurate. To perform more accurate and more reliable predictions of thermal-hydraulic accidents in a nuclear power plant using computational fluid dynamics codes, a more detailed methodology is needed. Modelling results identified that thermal stratification and natural convection are observed. Temperatures of lower monitoring points remain low, while temperatures of upper monitoring points increase over time. The water in the heated region, in the upper unheated region and the pipe region was well mixed due to natural convection, meanwhile, there is no natural convection in the lower unheated region. Water temperature in the pipe region increased after a certain time delay due to circulation of flow induced by natural convection in the heated and upper unheated regions. The modelling results correspond to the experimental data. The developed computational fluid dynamics methodology could be applied for modelling of two-component single/two-phase natural convection and thermal stratification phenomena during the mid-loop operation of the pressurized water reactor or other nuclear and non-nuclear installations at similar conditions.

시화호에서 해수유입 전.후의 수환경 요인과 식물플랑크톤 동태 (Dynamics of Water Environmental Factors and Phytoplankton Before and After Inflow of Seawater in Shingwa Reservoir)

  • 신재기;김동섭;조경제
    • 한국환경과학회지
    • /
    • 제9권2호
    • /
    • pp.115-123
    • /
    • 2000
  • The dynamics of water quality and phytoplankton population had examined by monthly sampling from the upper to the lower part of watergate in an artificial Shihwa Reservoir in which situated near newly cities and incustrial complex on the west coast of Korea from January 1997 to December 1998. Among environmental factors, yearly average concentration of chl-a, TN and TP seemed to eutrophic or hypertrophic conditions that ranged 146.4~245.8 $\mu\textrm{g}$/$\ell$, 1.6~2.7 mg N/$\ell$, 258~448 $\mu\textrm{g}$ P/$\ell$, 26.9~80.7 $\mu\textrm{g}$/$\ell$, 1.0~2.4 mgN/$\ell$ and 74~239 $\mu\textrm{g}$P/$\ell$ respectively. Water quality was extremely deteriorated to consistently accumulation into inner reservoir by load of pollutants from autochthonous and allochthonous until early July 1997 after embankment. Water pollution of Shihwa Reservoir was remarkble on the biological condition with largely persistent bloom of phytoplankton and increase rate of standing crops was 2.4/yr. The development trend of phytoplankton in water ecosystem were closely related to increse and decrease of physico-chemical factors and those scale seemed to control by nutrient contents. Inflow of seawater into reservoir to object of repair of water quality. As to see dominant species, composition of those composed to mostly freshwater algae before inflow of seawater such as Selenastrum capricornutum of green algae, cyclotella atomus, C. meneghiniana of diatom and Microcystis spp. of blue-green algae and the other hand brackish algae were dominated after inflow of seawater such as Chaetoceros dicipiens, Skeletonema costatum of diatom, Dinophysis acuminata, Gymnodinium mikimotoi, G. sanguineum, Gyrodinium spirale, Prorocentrum minmum of dinoflagellate and Eutreptiella gymnastica of euglenoid. Moreover, small flagellates including Chroomonas spp. of cryptomonad were abundant throughout the year. The cause of water deterioration during fill of the freshwater were complexly supported with extra and intra parameters. The variation pattern of phytoplankton were related to water temperature and salinity by inflow of seawater based to plentiful nutrients. The dynamics of phytoplankton were assessed to ecosystem that clearly condition of dominant by unique or a few angel species seasonally.

  • PDF

Nonlinear State Feedback for Minimum Phase in Nuclear Steam Generator Level Dynamics

  • Jeong, Seong-Uk;Choi, Jung-In
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권3호
    • /
    • pp.66-70
    • /
    • 1997
  • The steam generator level is susceptible to the nonminimum phase in dynamics due to the thermal reverse effects known as "shrink and swell" in a pressurized water reactor. A state feedback assisted control concept is presented for the change of dynamic performance to the minimum phase the concept incorporates a nonlinear digital observer as a part of the control system. The observer is deviced to estimate the state variables that provide the true indication of water inventory by compensating for shrink and swell effects. The concept is validated with implementation into the steam generator simulation model.

  • PDF

SITE-DIRECTED MUTATION STUDY ON HYPERTHERMOSTABILITY OF RUBREDOXIN FROM PYROCOCCUS FURIOSUS USING MOLECULAR DYNAMICS SIMULATIONS IN WATER

  • Jung, Dong-Hyun;Kang, Nam-Sook;Jhon, Mu-Shik
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.21-21
    • /
    • 1996
  • The hyperthermostable protein, rubredoxin from Pyrococcus furiosus is 53-residue protein with a three-stranded anti-parallel $\beta$-sheet and several loops. To investigate the effect of changes of electrostatic and hydrophobic interactions on the structure and dynamic property of P. furiosus rubredoxin, molecular dynamics simulations in water were performed on three mesophilic rubredoxins, P, furiosus rubresoxin, and 5 mutants of P. furiosus rubredoxin. (omitted)

  • PDF

Good modeling practice of water treatment processes

  • Suvalija, Suvada;Milisic, Hata;Hadzic, Emina
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.79-91
    • /
    • 2022
  • Models for water treatment processes include simulation, i.e., modelling of water quality, flow hydraulics, process controls and design. Water treatment processes are inherently dynamic because of the large variations in the influent water flow rate, concentration and composition. Moreover, these variations are to a large extent not possible to control. Mathematical models and computer simulations are essential to describe, predict and control the complicated interactions of the water treatment processes. An accurate description of such systems can therefore result in highly complex models, which may not be very useful from a practical, operational point of view. The main objective is to combine knowledge of the process dynamics with mathematical methods for processes estimation and identification. Good modelling practice is way to obtain this objective and to improve water treatment processes(its understanding, design, control and performance- efficiency). By synthesize of existing knowledge and experience on good modelling practices and principles the aim is to help address the critical strategic gaps and weaknessesin water treatment models application.

Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

  • Kim, Eunae;Yeom, Min Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1501-1505
    • /
    • 2014
  • Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge.

고분자전해질막 연료전지의 공기유로 내에서의 다중 액적 거동에 대한 수치적 연구 (NUMERICAL STUDY OF MULTIPLE DROPLET DYNAMICS IN A PEMFC AIR FLOW CHANNEL)

  • 최지영;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.159-164
    • /
    • 2009
  • The water droplet motion and the interaction between the droplets in a PEMFC air flow channel with multiple pores, through which water emerges, is studied numerically by solving the equations governing the conservation of mass and momentum. The liquid-gas interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface. The method is modified to implement the contact angle conditions on the walls and pores. The dynamic interaction between the droplets growing on multiple pores while keeping the total water flow rate through pores constant is investigated by conducting the computations until the droplet motion exhibits a periodic pattern. The numerical results show that the droplet merging caused by increasing the number of pores is not effective for water removal and that the contact angle of channel wall strongly affects water management in the PEMFC air flow channel.

  • PDF