Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.5.1501

Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation  

Kim, Eunae (College of Pharmacy, Chosun University)
Yeom, Min Sun (Korea Institute of Science and Technology Information)
Publication Information
Abstract
Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge.
Keywords
Nanoparticle; Electrostatic interactions; Radial distribution function;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kandori, H. Biochim. Biophys. Acta 2000, 177, 1460.
2 Hashimoto, K.; Choi, A. R.; Furutani, Y.; Jung, K. H.; Kandori, H. Biochem. 2010, 49, 3343.   DOI   ScienceOn
3 Haupts, U.; Tittor, J.; Oesterhelt, D. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 367.   DOI   ScienceOn
4 Kandori, H.; Yamazaki, Y.; Sasaki, J.; Needleman, R.; Lanyi, J. K.; Maeda, A. J. Am. Chem. Soc. 1995, 117, 2118.   DOI
5 Lanyi, J. K. J. Struct, Bio. 1998, 124, 164.   DOI
6 Luecke, H.; Schobert, B.; Richter, T.; Cartailler, J. P.; Lanyi, J. K. J. Mol. Biol. 1999, 291, 899.   DOI   ScienceOn
7 Daniel, J.; Solomon, S.; Saunders, R.; Portman, R.; Miller, D.; Madsen, W. J. Geophys. Res. 1999, 104, 16785.   DOI
8 Daniel, J. S.; Solomon, S.; Kjaergaard, H. G.; Schofield, D. P. Geophys. Res. Lett. 2004, 31, L06118.
9 Hill, C.; Jones, R. J. Geophys. Res. 2000, 105, 9421.   DOI
10 Huisken, F.; Kaloudis, M.; Kulcke, A. J. Chem. Phys. 1996, 104, 17.   DOI
11 Kandori, H.; Shichida, Y. J. Am. Chem. Soc. 2000, 122, 11745.   DOI
12 Vaida, V.; Daniel, J.; Kjaergaard, H. G.; Goss, L. M.; Tuck, A. F. Q. J. Roy. Meteorol. Soc. 2001, 127, 1627.   DOI
13 Low, G. R.; Kjaergaard, H. G. J. Chem. Phys. 1999, 110, 9104.   DOI
14 Schofield, D. P.; Kjaergaard, H. G. Phys. Chem. Chem. Phys. 2003, 5, 3100.   DOI
15 Benedict, W. S.; Gailar, N.; Plyler, E. K. Chem. Phys. Lett. 1956, 24, 1139.
16 Bansil, R.; Berger, T.; Toukan, M. A. R.; Chen, S. H. Chem. Phys. Lett. 1986, 132, 165.   DOI
17 Curtiss, L. A.; Pople, J. A. J. Mol. Spectrosc. 1975, 55, 1.   DOI
18 Oder, R.; Goring, D. A. I. Spectr. Acta Part A: Mol. Spectrosc. 1971, 27, 2285.   DOI
19 Kim, J.; Lee, J. Y.; Lee, S.; Mhin, J.; Kim, K. S. J. Chem. Phys. 1995, 102, 310.   DOI   ScienceOn
20 Kumar, N.; Neogi, S.; Kent, P. R. C.; Bandura, A. V.; Kubicki, J. D.; Wesolowski, D. J.; Cole, D.; Sofo, J. O. J. Phys. Chem. C 2009, 113, 13732.   DOI
21 Palese, S.; Buontempo, J. T.; Schilling, L.; Lotshaw, W. T.; Tanimura, Y.; Mukamel, S.; Miller, R. J. D. J. Phys. Chem. 1994, 98, 12466.   DOI   ScienceOn
22 Perera, P. N.; Fega, K. R.; Lawrence, C.; Tomlinson-Phillips, J.; Ben-Amotz, D. Proc. Natl. Acad. Sci. USA 2009, 106, 12230.   DOI
23 Schofield, D. P.; Lane, J. R.; Kjaergaqard, H. G. J. Phys. Chem. A 2007, 111, 567.   DOI   ScienceOn
24 Silvestrelli, P. L.; Bernasconi, M.; Parrinello, M. Chem. Phys. Lett. 1997, 277, 478.   DOI
25 Thrane, L.; Jacobsen, R. H.; Jepsen, P. U.; Keiding, S. R. Chem. Phys. Lett. 1995, 240, 330.   DOI
26 Woods, K. N.; Wiedemann, H. Chem. Phys. Lett. 2004, 393, 159.   DOI   ScienceOn
27 Caleman, C.; van der Spoel, D. Phys. Chem. Chem. Phys. 2007, 9, 5105.   DOI
28 Gomez, E. W.; Clack, N. G.; Wu, H. J.; Groves, J. T. Soft Matter 2009, 5, 1931.   DOI
29 Gonzalez-Mozuelos, P.; Olvera de la Cruz, M. Phys. Rev. E. 2009, 79, 031901.   DOI
30 Kung, W.; Gonzalez-Mozuelos, P.; Olvera de la Cruz, M. Soft Matter 2010, 6, 331.   DOI
31 Guerrero-Garcia, G. I.; Gonzalez-Tovar, E; Olvera de la Cruz, M. Soft Matter 2010, 6, 2056.   DOI
32 Plimpton, S. J. Comp. Phys. 1995, 117, 1.   DOI   ScienceOn
33 Nag, A.; Chakraborty, D.; Chandra, A. J. Chem. Sci. 2008, 120, 71.   DOI
34 Lee, S. H. Bull. Korean Chem. Soc. 2013, 34, 3800.   DOI   ScienceOn
35 Ptashnik, I. V.; Smith, K. M.; Shine, K. P.; Newnham, D. A. Q. J. Roy. Meteorol. Soc. 2004, 130, 2391.   DOI
36 Maeda, A.; Sasaki, J.; Yamazaki, Y.; Needleman, R.; Lanyi, J. K. Biochem. 1994, 33, 1713.   DOI