• Title/Summary/Keyword: water distribution system

Search Result 1,586, Processing Time 0.033 seconds

Distribution Characteristcs of Organophosphorous Pesticides in Asan Bay, Korea in Summer 2006 (2006년도 하계 아산만의 유기인계 농약의 분포 특성)

  • Choi, Jin-Young;Lee, Sung-Gyu;Yang, Dong-Beom;Hong, Gi-Hoon;Shin, Kyoung-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Distribution characteristics of organophosphorous pesticides (OPs) were studied over the period from May to September, 2006 in Asan Bay, Korea. During the study period, 28 kinds of organophosphorous pesticides dissolved in surface water and adsorbed on suspended particle were measured. In the surface water, the dominant OPs were IBP and DDVP, and the concentration were in the ranges from not detected to 2014.4 ng/L for IBP and 3.2 to 696.3 ng/L for DDVP. The highest concentrations of OPs in the surface waters in Asan Bay appeared in July and August showing that seasonal distributions of OPs depend on application time and precipitation. The concentrations of OPs generally decreased with the increase of distance from the mouth of Asan Bay, implying progressive dilution of pesticides in the estuarine system. OPs residue in Asan Bay was relatively higher than in other area of Korea. The concentrations of the observed OPs concentrations did not exceed the seawater quality standard of Korea. DDVP, IBP, Diazinon, Phorate, Azinphos ethyl and Chlorfenvinfos had higher adsorption capacity onto suspended particle than the other OPs. In the study area, adsorption coefficients $(K_d)$ of OPs were closely related to the Log $K_ow$ of each compound.

  • PDF

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

Plankton Community in Weir Section of the Nakdong River and Its Relation with Selected Environmental Factors (낙동강 보 구간의 플랑크톤 군집조성과 환경요인에 의한 영향 분석)

  • Seo, Dong-Il;Nam, Gui-Sook;Lee, Sang-Hyup;Lee, Eui-Haeng;Kim, Mirinae;Choi, Jong-Yun;Kim, Jeong-Hui;Chang, Kwang-Hyeon
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.362-369
    • /
    • 2013
  • Phytoplankton and zooplankton communities were investigated from 8 weir sites of the Nakdong River system to provide basic information on plankton community after weir construction and to estimate its effects on major water quality parameters. The relationship between plankton community structure and environmental factors was analysed with CCA (Canonical Correspondence Analysis). The results suggested that discharge and total phosphorus and nitrogen concentrations are important factors determining the phytoplankton species composition. For zooplankton community, the difference in discharge between September and October induced different distribution pattern of zooplankton community with more homogeneous distribution with extreme dominance of rotifers during the high discharge season. Chlorophyll a concentration representing phytoplankton biomass has been suggested as the main environmental factor affecting zooplankton community followed by COD and total nitrogen concentration.

Study on the Front Detection Techniques by using Satellite Data (위성 자료를 이용한 전선 탐지 기법 연구)

  • Hwang, Do-Hyun;Bak, Su-Ho;Enkhjargal, Unuzaya;Jeong, Min-Ji;Kim, Na-Kyeong;Park, Mi-So;Kim, Bo-Ram;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1201-1208
    • /
    • 2020
  • A mass of seawater with similar properties in the ocean is called a water mass, and the front is a sea area where two masses of different properties meet. The gradient algorithm is a method of extracting where the sea water temperature pixel changes rapidly assuming that the slope is large, and the place with the large slope is assumed to be a front. This method is able to process large amounts of satellite data at once. Therefore, in this study, we tried to find the front lines in the sea area around the Korean Peninsula by using a gradient algorithm. The study data used gridded sea surface temperature satellite data. The resolution was 1/4°, and the monthly average data from January 1993 to December 2018 were used. There were major five fronts representatively, China Coastal Front, South Sea Coastal Front, Kuroshio Front/ Kuroshio Extension Front, Subpolar Front and the Subarctic Front. As a result of comparing the distribution of front by season, more types of front were distributed in winter and spring than in summer and autumn, and the distribution range was wider.

Dispersal of potential habitat of non-native species tilapia(Oreochromis spp.) inhabiting rivers in Korea (국내 하천에 서식하는 외래종 틸라피아(tilapia)의 잠재적 서식처 확산)

  • Ju Hyoun Wang;Jung Soo Han;Jun Kil Choi;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.101-108
    • /
    • 2023
  • Recently, in relation to climate change, many studies have been conducted to predict the potential habitat area and distribution range of tilapia and the suitability of habitat for each species. Most tilapia are tropical fish that cannot survive at water temperatures below 10 to 12℃, although some tilapia can survive at 6 to 8℃. This study predicted habitable areas and the possibility of spreading of habitat ranges of tilapia (Oreochromis niloticus and Oreochromis aureus) known to inhabit domestic streams. Due to climate change, it was found that habitats in the Geum River, Mangyeong River, Dongjin River, Seomjin River, Taehwa River, Hyeongsan River, and the flowing in East Sea were possible by 2050. In addition, it was confirmed that tilapia could inhabit the preferred lentic ecosystem such as Tamjin Lake, Naju Lake, Juam Lake, Sangsa Lake, Jinyang Lake, Junam Reservoir, and Hoedong Reservoir. In particular, in the case of tilapia, which lives in tributaries of the Geumho River, Dalseo Stream, and the Nakdong River, its range of habitat is expected to expand to the middle and lower of the Nakdong River system. Therefore, it is judged that it is necessary to prepare physical and institutional management measures to prevent the spread of the local population where tilapia currently inhabits and to prevent introduction to new habitats.

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.

A Study on the Characteristics of Oil-water Separation in Non-point Source Control Facility by Coalescence Mechanism of Spiral Buoyant Media (나선형 부유 고분자 여재의 Coalescence 특성을 이용한 비점오염원 저감시설의 유수분리특성 연구)

  • Kang, Sung-Won;Kim, Seog-Ku;Kim, Young-Im;Yun, Sang-Leen;Kim, Soo-Hae;Kim, Mee-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.950-955
    • /
    • 2007
  • Non-point source control system which had been designed only for oil-water separation in the fields of oil refinery and garage was upgraded in this research for the removal of runoff pollutants in impervious urban area. Pollutants including oil from driveway and bridge were eliminated by two types of pathway in the system. One is the coalescence mechanism that the oil droplets in the runoff come into contact with each other in the spiral buoyant media surface and form larger coalesced droplets of oil that are carried upstream to the oil layer. The other is the precipitation that solids in runoff were settled by gravity in the system. In this research, coalescing characteristics of oil and water separation were investigated through image analyses, and efficiencies of the non-point source control system were evaluated using dust in driveway and waste engine oil. Media made of high density and high molecular weight polyethylene was indeterminate helical shape and had sleek surface by analysing SEM photographs and BET. Surface area and specific gravity of media which were measured directly were 1,428 $mm^2$ and 45.3 $kg/m^3$ respectively. From the image analyses of the oil droplets photographs which were taken by using microscope, it was proved clearly that the coalescence was the main pathway in the removal of oil from the runoff. Finally, the performances of the non-point source control system filled up with the media were suspended solid $86.6\sim95.2%$, $COD_{Cr}$, $87.3\sim95.4%$, n-Hexane extractable materials $71.8\sim94.8%$ respectively.

Drought Index Development for Agricultural Drought Monitoring in a Catchment (집수역 내 농업가뭄 감시를 위한 가뭄지수 개발)

  • Kim, Dae-Jun;Moon, Kyung-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.359-367
    • /
    • 2014
  • Drought index can be used to implement an early warning system for drought and to operate a drought monitoring service. In this study, an approach was examined to determine agricultural drought index (ADI) at high spatial resolution, e.g., 270 m. The value of ADI was calculated based on soil water balance between supply and demand of water. Water supply is calculated by the cumulative effective precipitation with the application of the weight to the precipitation from two months ago. Water demand is derived from the actual evapotranspiration, which was calculated applying a crop coefficient to the reference evapotranspiration. The amount of surface runoff on a given soil type was also used to calculate soil residual moisture. Presence of drought was determined based on the probability distribution in the given area. In order to assess the reliability of this index, the amount of residual moisture, which represents severity of drought, was compared with measurements of soil moisture at three experimental between July 2012 and December 2013. As a result, the ADI had greater correlation with measured soil moisture compared with the standardized precipitation index, which suggested that the ADI would be useful for drought warning services.

Study on distribution and extermination of scuticociliatids parasitizing to japanese flounder, Paralichthys olivaceus in southern Korea (남해 양식산 넙치(Paralichthys olivaceus) 치어에 기생한 스쿠티카 섬모충(scuticociliatids) 동태 및 구제에 관하여)

  • Choi, Sang-Duk;Kim, Jin-Man;Kim, Sung-Yeon;Jo, Yong-Chul;Choi, Koang-Kyu;Yang, Han-Choon
    • Journal of fish pathology
    • /
    • v.10 no.1
    • /
    • pp.21-29
    • /
    • 1997
  • We investigated on the prevalence and extermination of scuticociliatids parasitic on cultured japanese flounder, Paralichthys olivaceus in land-marine tank system of southern Korea from January to February in 1997. The gills and the skin showed the highest infection rate(60%), and the brain showed the lowest(22%). Also, fish secreted large quantity of mucus with a bleeding and ulcerated lesions on the infected sites. The number of the parasites in inflowing sea water, surface water and bottom water of farming tank ranged 0~1 individuals/$100m\ell$, 0~413 individuals/$100m\ell$ and $7\sim7.3{\times}10^4$ individuals/$100m\ell$, respectively. This parasite was died within 2 hours in 50~500 ppm, 48 hours of 10 ppm formalin or hydrogen peroxide, 1 hour in 50~500 ppm, 80 minutes of 10 ppm oligo chitosan and 10 minute in 100% but did not died until 48 hours in 10~70% fresh water.

  • PDF

Numerical Analysis of Horizontal Collector Well in Riverbank Filtration (수평 방사형 집수정 활용 강변여과 취수 수치 분석)

  • Kim, Hyoung-Soo;Jeong, Jae-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • Groundwater flow due to intake of horizontal collector well in riverbank filtration site was analyzed by use of numerical groundwater modeling program (FEFLOW 5.1). Drawdowns of groundwater table nearby collector well were evaluated according to variations of several conditions; pumping rate, thickness of aquifer, offset distance from well to shore line of stream, conductance of streambed. It is observed that the drawdowns of groundwater table are clearly changed according to the variations of these conditions. The results of sensitive analysis shows that the thickness of alluvial aquifer and the offset distance are more sensitive than the conductance of streambed in evaluation of drawdown. This result implies that hydrogeological conditions, as like thickness of aquifer and its distribution in the site are important factors in site selection and evaluating the availability of riverbank filtration intake using horizontal collector well system. It is also revealed that numerical modeling using FEFLOW with 1-D discrete element feature can give efficient quantitative evaluation of horizontal collector well and estimation of availability of riverbank filtration site.