• Title/Summary/Keyword: water deficiency

Search Result 294, Processing Time 0.027 seconds

Studies on the Boron Metabolism of Orchid -Influences on the Cell Wall Structure and its Components- (양란의 붕소 대사에 관한 연구 -특히 세포벽 형성 및 분획 조성에 미치는 영향-)

  • 강영희
    • Journal of Plant Biology
    • /
    • v.22 no.1_2
    • /
    • pp.35-43
    • /
    • 1979
  • The present investigation has been made to study the deficiency symptoms of boron on the formation of cell wall and the development of the individual components of the orchid cell wall. Analytical samples were taken from two sources; one from the individual orchid plants started from an apical meristem culture followed by the generation of the protocorm-like body which was developed into a plant, the other from the plant cultivated in water for 30 days. The amount of boron in the cultrues were controlled and the deficiency symptoms were observed under theelectron microscope, optical microscope with samples taken from the zones of elongation of leaves and compared the dry weight of cell walls and finally the various fractions of the cell wall components. The following results were obtained: (1) The growth of roots and leaves was hampered in the boron deficient plants. (2) In the boron-deficient leaves a severe necrosis and cracks were developed in the tissue of zone of elongation besides the decrease in growth. (3) under the electorn microscope the cell walls of boron-deficient plants showed rough undulated structures unlike the smooth control cell walls. (4) the dry weight of total cells and cell walls of boron deficient plants were higher than the control plants. (5) In the boron deficient plant the amout of pectin and hemicellulose isolated from cell walls were higher and the amount of protein was lower than the controlled plots.

  • PDF

Development of Drought Stress Measurement Method for Red Pepper Leaves using Hyperspectral Short Wave Infrared Imaging Technique (초분광 단파적외선 영상 기술을 이용한 고추의 수분스트레스 측정 기술 개발)

  • Park, Eunsoo;Cho, Byoung-Kwan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • This study was conducted to investigate the responses of red pepper (Hongjinju) leaves under water stress. Hyperspectral short wave infrared (SWIR, 1000~1800 nm) reflectance imaging techniques were used to acquire the spectral images for the red pepper leaves with and without water stress. The acquired spectral data were analyzed with a multivariate analysis method of ANOVA (analysis of variance). The ANOVA model suggested that 1449 nm wavebands was the most effective to determine the stress responses of the red pepper leaves exposed to the water deficiency. The waveband of 1449 nm was closely related to the water absorption band. The processed spectral image of 1449 nm could separate the non-stress, moderate stress (-20 kPa), and severe stress (-50 kPa) groups of red pepper leaves distinctively. Results demonstrated that hyperspectral imaging technique can be applied to monitoring the stress responses of red pepper leaves which are an indicator of physiological and biochemical changes under water deficiency.

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

Quality Improvement of Rayon Grade Bamboo Pulp by Modified Bleaching

  • Tripathi, Sandeep;Mishra, Om Prakash;Sharma, Nirmal;Chakrabarti, Swapan Kumar;Varadhan, Raghavan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • The presence of high silica in bamboo hinders the use of this material for production of rayon grade pulp. Research has been carried out to overcome this deficiency and improve quality of rayon grade pulp with the modification in pulping and bleaching process. Effect of acid boosted water prehydrolysis, sulphuric acid pre-treatment of unbleached pulp, chlorination stage at lower pH and treatment of bleached pulp with $SO_2$ water were evaluated. Acid boosted water prehydrolysis of chips reduces prehydrolysis time by 50 minutes as compared to water prehydrolysis. Treatment of unbleached pulp with sulphuric acid reduces ash, acid insoluble, silica, calcium and iron contents of the pulp by 56, 31, 82, 84 and 60% respectively. The addition of acid, increase in kappa factor in $C_D$ stage and combination of both were effective in removing silica in the pulp. Treatment of final bleached pulp with $SO_2$ water removes silica to a great extent and improves optical properties of the pulp as compared to $H_2SO_4$ or PAA. Pretreatment of the pulp with acid and modification in the bleaching process can reduce silica substantially and improve the quality of rayon grade bamboo pulp.

On the Growth and Total Nitrogen Changes of Glycine max. Artificial Plant Communities, Grown in Sandy Loam Soil withe a Controlled Moisture Content (토양함수량의 조절에 의한 Glycine max. 인공군업의 성장과 총질소량의 변동에 관하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.14 no.3
    • /
    • pp.21-28
    • /
    • 1971
  • Dry matter production, leaf area growth and total nitrogen changes were studied in Glycine max. soybean communities, which were grown in sandy loam soils controlled to provide various moisture levels, i.e., 5-7%(level 1), 8-10%(level 2), 11-13%(level 3), 14-15%(lev디 4), 17-20%(level 5) and 22-24%(level 6). A summary of the results is shown. The maximum dry matter production of leaves, stems and nodules and the maximum leaf area per unit area were at level 5, but the maximum of root dry matter production was at level 4. Total nitrogen content of the soybean plant decreased with growth, but each level of soil moisture content also showed a little difference. Water content of the plant decreased with plant age and soil water deficiency, especially in roots and nodules. Nodule formation increased in proportion to soil moisture content. total nitrogen content of the soil on which the soybeans grew, increased from 0.23% before sowing to 0.30% at 100 days after sowing. It seems that soil water content acts as a linear factor in the elongation or dry weight increase of shoots and roots until increasing to level 5. Considering the pattern of plant growth through analysis of the shoot and root dry weight ratio, or the photosynthetic organ and non-photosynthetic organ dry weight ratio, the asymptote of plant growth at a high soil water content exceeded that at a low soil water content.

  • PDF

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

Modeling water supply and demand under changing climate and socio-economic growth over Gilgit-Baltistan of Pakistan using WEAP

  • Mehboob, Muhammad Shafqat;Panda, Manas Ranjan;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.116-116
    • /
    • 2020
  • Gilgit-Baltistan (GB) is a highly mountainous and remote region covering 45% of Upper Indus Basin (UIB) with around 1.8 million population is vulnerable to climate change and socio-economic growth makes water resources management and planning more complex. To understand the water scarcity in the region this study is carried out to project water supply and demand for agricultural and domestic sector under various climate-socio-economic scenarios in five sub catchments of GB i.e., Astore, Gilgit, Hunza, Shigar and Shyok for a period of 2015 to 2050 using Water Evaluation and Planning (WEAP) model. For climate change scenario ensembled mean of three global climate models (GCMs) was used under three different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP6.0 and RCP8.5). The Shared Socioeconomic Pathways (SSPs) and agricultural Land Development (LD) scenarios were combined with climate scenarios to develop climate-socio-economic scenario. Our results indicate that the climate change and socio-economic growth would create a gap between supply and demand of water in the region, with socio-economic growth (e.g. agricultural and population) as dominant external factor that would reduce food production and increase poverty level in the region. Among five catchments only Astore and Gilgit will face shortfall of water while Shyoke would face shortfall of water only under agricultural growth scenarios. We also observed that the shortfall of water in response to climate-socio-economic scenarios is totally different over two water deficient catchments due to its demography and geography. Finally, to help policy makers in developing regional water resources and management policies we classified five sub catchments of UIB according to its water deficiency level.

  • PDF

The Vertical Fluxes of Particles and Radionuclides in the East Sea

  • Moon, Deok-Soo;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.16-33
    • /
    • 2000
  • In order to measure the vertical fluxes of particles and reactive radionuclides such as thorium and polonium isotopes, Dunbar-type sediment traps were freely deployed at the Ulleung Basin and in warm and cold water masses around the polar front of the East Sea. We estimated the ratios of the catched (F) to the predicted $^234$Th fluxes (P) using natural tracers pair $^234$Th-$^238$U. The F/P ratios are decreased with increasing water depth. Whereas the concentrations of suspended particles are homogeneous in water column, the mass fluxes are also decreased with increasing water depth like the F/P ratios. These facts indicate that organic matters of settling particles are destructed within the euphotic layer due to decomposition. Whereas regenerations of sinking particles are negligible in the cold water mass, about 80% of them are regenerated in the warm water mass during falling of large particles. These downward mass fluxes are closely correlated with their primary productions in euphotic zone. The activities of $^234$Th, $^228$Th and $^210$Po in the sinking material were increased with water depth. Because $^234$Th steadily produced in the water column are cumulatively adsorbed on the surface of sinking particles, vertical $^234$Th fluxes were observed to increase with water depth. Therefore, these sinking particles play important roles in transporting the particle reactive elements like thorium from surface to the deep sea. The scavenging processes including adsorption and settling reactions generate radio-disequilibrium between daughter and parent nuclides in water column. The activity ratios of $^234$Th/$^238$U and $^228$Th/$^228$Ra were observed to be < 1.0 in the surface water and approached to be equilibrium below the thermocline. The extent of the deficiency of daughter nuclides compared to the parents nuclide was highly correlated with the vertical particle flux. Because most of the $^210$Po in the surface water are scavenged on a labile phase and are recycled at sub-surface depths (< 200 m), the $^210$Po are always observed to be excess activities compared to $^226$Ra in surface water.

  • PDF

Elasticity Analyses between Water Temperature and Water Quality considering Climate Change in Nak-dong River Basin (기후변화를 고려한 낙동강 유역의 수온과 수질 탄성도 분석)

  • Shon, Tae Seok;Lee, Kyu Yeol;Im, Tae Hyo;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.830-840
    • /
    • 2011
  • Climate change has been settled as pending issues to consider water resources and environment all over the world, however, scientific and quantitative assessment methods of climate change have never been standardized. When South Korea headed toward water deficiency nation, the study is not only required analysis of atmospheric or hydrologic factors, but also demanded analysis of correlation with water quality environment factors to gain management policies about climate change. Therefore, this study explored appropriate monthly rainfall elasticity in chosen 41 unit watersheds in Nak-dong river which is the biggest river in Korea and applied monitored discharge data in 2004 to 2009 with monthly rainfall using Thiessen method. Each unit watershed drew elasticity between water temperature and water quality factors such as BOD, COD, SS, T-N, and T-P. Moreover, this study performed non-linear correlation analysis with monitored discharge data. Based on results of analysis, this is first steps of climate change analysis using long-term monitoring to develop basic data by Nak-dong river Environmental Research Center (Ministry of Environment) and to draw quantitative results for reliable forecasting. Secondary, the results considered characteristic of air temperature and rainfall in each unit watershed so that the study has significance its various statistical applications. Finally, this study stands for developing comparable data through "The 4 major river restoration" project by Korea government before and after which cause water quality and water environment changes.

Determination of the Storage Constant for the Clark Model by based on the Observed Rainfall-Runoff Data (강우-유출 자료에 의한 Clark 모형의 저류상수 결정)

  • Ahn, Tae-Jin;Choi, Kwang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1454-1458
    • /
    • 2007
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage constant based on the observed rainfall-runoff data at the three stage stations in the Imjin river basin and the three stage stations in the Ansung river basin. In this study four methods have been proposed to estimate the storage constant from observed rainfall-runoff data. The HEC-HMS model has been adopted to execute the sensitivity of storage constant. A criteria has been proposed to determine storage constant based on the results of the observed hydrograph and the HEC-HMS model.

  • PDF