• Title/Summary/Keyword: water cycle management

Search Result 291, Processing Time 0.027 seconds

Analysis of Hydrological Drought Considering MSWSI and Precipitation (MSWSI와 강수인자를 고려한 수문학적 가뭄 분석)

  • Jeong, Min-Su;Lee, Chul-Hee;Lee, Joo-Heon;Hong, Il-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.668-678
    • /
    • 2017
  • In this study, the hydrological and meteorological drought index with precipitation as a major factor were calculated, and various analyses of hydrological drought were conducted. The Modified Surface Water Supply Index (MSWSI) was applied to the hydrological drought index and Standardize Precipitation Index (SPI) was used to estimate the meteorological drought index. The target area for the estimation is the dam area among MSWSI categories. The 4001 basin with 43 years data from 1975 to 2017 was analyzed for the drought occurrence status and time series plotted with the monthly SPI and MSWSI. For the dam watershed based on the precipitation that has the role of a water supply in the hydrological cycle, correlation analysis of precipitation, dam inflow, and stream flow was performed by the monthly and moving average (2~9 months), and the correlation between meteorological and hydrological index by monthly and moving average (3, 6 months) was then calculated. The result of multifaced analysis of the hydrological drought index and meteorological drought index is believed to be useful in developing water policy.

Estimation of material budget for Keum river estuary using a Box Model (BOX 모델을 이용한 금강 하구해역의 물질수지 산정)

  • Kim Jong-Gu;Kim Dong-Myung;Yang Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.76-90
    • /
    • 2000
  • The estimation of material cycle of pollutants is necessary for the environment management in coastal zone. Model for material budgets are useful tools to understand the phenomena of natural system and to provide an insight into the complex processes including physical, chemical and biological processes occuring in natural system. Budgets of fresh water, salt and nutrients were estimated in order to clarify the characteristics of seasonal material cycle in Keum river estuary. Inflow volumes of freshwater into system was approximately 1.014×10/sup 8/~12.565×10/sup 8/m³/month and discharge in Keum river has occupied 99.7% of total freshwater. Seasonal variations of freshwater volume in the system were found to be very high in the range of about 4 ~ 14 times due to rainfall in summer season. Existing water mass of freshwater in system calculated by salt budget was approximately 0.339×10/sup 8/~0.652×10/sup 8/m³. Mean residence time of freshwater was calculated to be about 1.6~10.0day, and exchange time was calculated to be about 2.2~11.9day. Mean residence time was short as 1.6day in summer due to precipitation, and long as 10.1day in winter due to a drought. Inflow masses of DIP and DIN were approximately 5.57~32.68ton/month and 234.93~2,373.39ton/month, respectively. Seasonal inflow mass of DIP was larger than the outflow mass except for summer season. Thus, we postulate that accumulation of DIP in the system will happen. Residence times of DIP and DIN were calculated to be 1.1~6.4day and 1.8~10.9day, respectively. The ratio of water residence time versus DIP, DIN residence time was calculated to be 0.39~2.31 times and 0.83~1.13 times, respectively.

  • PDF

Limnological Characteristics of the River-type Paltang Reservoir, Korea: Hydrological and Environmental Factors (하천형 저수지 팔당호의 육수학적 특성:수문과 수환경 요인)

  • Shin, Jae-Ki;Kang, Chang-Keun;Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.242-256
    • /
    • 2003
  • This study aimed to determine the relationship between rainfall-discharge patterns and maior aquatic environmental factors in a river-type reservoir. Specifically, daily monitoring was conducted in Paltang Reservoir from January 1999 to December 2001. Observation of the daily changes of the environment factors showed that natural meteorological factors and hydrological factors causing the change of water discharge had a major effect on the aquatic environment. Rainfall was the main source of hydrological changes, with its frequency a possible direct variable governing the range of discharge changes. Rainfall was weak in November${\sim}$May and heavy in June${\sim}$October (heavist in summer). The range of water discharge was greatest during summer (July to September) and lowest during winter (January to February). A principal component analysis (PCA) showed that aquatic environmental factors could be classified into three different types in the pattern of annual variation. First, type I included water temperature, turbidity, water color and organic matter (COD), which increased with increasing water discharge. Second, type ll consisted of DO and pH, which decreased with increasing water discharge. Third, type III included conductivity, alkalinity and chloride ion, which showed middle values with increasing water discharge. Monthly variation of aquatic environments explained by the first two dimensions of the PCA suggests that aquatic environments of Paltang Reservoir may have annual cycle typical of river-type reservoirs depending on hydrological factor such as water discharge.

Estimation of Crop Yield and Evapotranspiration in Paddy Rice with Climate Change Using APEX-Paddy Model (APEX-Paddy 모델을 이용한 기후변화에 따른 논벼 생산량 및 증발산량 변화 예측)

  • Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Choi, Dongho;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.27-42
    • /
    • 2017
  • The global rise in atmospheric $CO_2$ concentration and its associated climate change have significant effects on agricultural productivity and hydrological cycle. For food security and agricultural water resources planning, it is critical to investigate the impact of climate change on changes in agricultural productivity and water consumption. APEX-Paddy model, which is the modified version of APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystem, was used to evaluate rice productivity and evapotranspiration based on climate change scenario. Two study areas (Gimjae, Icheon) were selected and the input dataset was obtained from the literature. RCP (Representitive Concentration Pathways) based climate change scenarios were provided by KMA (Korean Meteorological Administration). Rice yield data from 1997 to 2015 were used to validate APEX-Paddy model. The effects of climate change were evaluated at a 30-year interval, such as the 1990s (historical, 1976~2005), the 2025s (2011~2040), the 2055s (2041~2070), and the 2085s (2071~2100). Climate change scenarios showed that the overall evapotranspiration in the 2085s reduced from 10.5 % to 16.3 %. The evaporations were reduced from 15.6 % to 21.7 % due to shortend growth period, the transpirations were reduced from 0.0% to 24.2 % due to increased $CO_2$ concentration and shortend growth period. In case of rice yield, in the 2085s were reduced from 6.0% to 25.0 % compared with the ones in the 1990s. The findings of this study would play a significant role as the basics for evaluating the vulnerability of paddy rice productivity and water management plan against climate change.

Modeling Sedimentation Process in Ipjang Reservoir using SWAT and EFDC (SWAT-EFDC 연계 모델링을 통한 입장저수지의 유사 해석)

  • Shin, Sat Byeol;Hwang, Soon-Ho;Her, Younggu;Song, Jung Hun;Kim, Hak Kwan;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.135-148
    • /
    • 2018
  • Reservoir sedimentation is a major environmental issue, and various sediment load controls and plans have been proposed to secure clean and safe water resources. The objectives of this study were to estimate soil loss in the upper basins and predict sediment deposition in Ipjang reservoir using hydrologic and hydraulic model. To do so, SWAT (Soil and Water Assessment Tool) and EFDC (Environmental Fluid Dynamics Code) was used to estimate soil loss in two upper basins and to predict spatial distribution and amount of sediment deposition in the Ipjang reservoir, respectively. The hydrologic modeling results showed that annual average soil loss from the upper basins was 500 ton. The hydraulic modeling results demonstrated that sediment particles transported to the reservoir were mostly trapped in the vicinity of the reservoir inlet and then moved toward the bank over time. If long-term water quality monitoring and sediment survey are performed, this study can be used as a tool for predicting the dredging amount, dredging location and proper dredging cycle in the reservoir. The study findings are expected to be used as a basis to establish management solutions for sediment reduction.

A case study on the selection process of cutoff wall for ground-water using VE/LCC analysis (VE/LCC 기법을 활용한 차수공법 선정사례 연구)

  • Cho Yong-Wan;Chang Jun-Ho;Kim Jin-Man;Ha Jae-In
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.279-291
    • /
    • 2006
  • This study shows decision-making process for selection of cutoff wall on a wastewater treatment project. There are 10 different cut-off wall methods So, we examine the site to gather information for find appropriate methods. After using that information, 10 cutoff wall methods are reviewed for analysis. Through brainstorming, four alternatives are selected for design VE item. Following the standard VE process, we established performance criteria and evaluated function score(F) using questionnaire. The questionnaires, brainstorming and AHP method for weighting on performance criteria and evaluate function score increased the reliability of this selection process. Water Jet method, one of four methods, has the best function score(F=92.71) and the lease construction cost(as cost index 1,000). The value score also highest as 92.7, so we select the method. The result is value innovation type In addition, the authors try to calculate the environmental burden in selection process using LCA. We cannot conduct the full LCA as defined ISO, so perform Simple LCA In LCA result, the cut-off grouting has the least environmental burden as index 9.09E+01 and Water Jet method has following as the second. To selection best method to specific area and purpose, design VE/LCG process used as useful tool and it is needed to develop integrated method that evaluate VEILCC and LCA as one-set process.

  • PDF

Study on the Annual Reproductive Cycle of the Comb Pen Shell, Atrina pectinata (Linnaeus, 1767) (Mollusca: Bivalvia: Pinnidae) on the Southern Coast of Ulleungdo Island, Korea (울릉도 남해역에 서식하는 키조개의 연중 번식주기에 관한 연구)

  • Yang, Hyun-Sung;Noh, Choong Hwan;Yoon, Sung Jin;Kim, Yun-Bae;Choi, Kwang-Sik;Kang, Do-Hyung
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.21-33
    • /
    • 2016
  • Gametogenesis of the comb pen shell, Atrina pectinata (Linnaeus, 1767) (Bivalvia: Pinnidae) on the southern coast of Ulleungdo Island, Korea was assessed monthly (November 2013 to October 2014) using histology. Gametogenesis commenced in January when the surface water temperature was $12.6^{\circ}C$ and pen shells evidenced an early development phase with small oogonia from January to April, although few females exhibited ripe eggs in their follicular epithelium. In April, the oocyte diameter increased rapidly, and fully mature eggs appeared in May. First spawning males and females were observed in June as the surface water temperature reached $19.3^{\circ}C$ and July ($23.2^{\circ}C$) respectively. The spawning activity continued until the end of September. Histology indicated that the spawning peak of the females in Ulleungdo Island was July to August. During October to January, most of the pen shells were in spent and resting stages. Our data suggested that A. pectinata is a summer spawner, and their annual gametogenesis is closely associated with the seasonal variation in the surface water temperature. The present study is the first provided fundamental information on the life history of A. pectinata in Ulleungdo Island, and this can be put to good use in the management of this pen shell in the study area.

Application of Ecosystem Model for Eutrophication Control in Coastal Sea of Saemankeum Area -2. Quantitative Management of Pollutant Loading- (새만금 사업지구의 연안해역에서 부영양화관리를 위한 생태계모델의 적용 -2. 오염부하의 정량적 관리-)

  • Kim Jong Gu;Kim Yang Soo;Cho Eun Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.356-365
    • /
    • 2002
  • One of the most important factors that cause eutrophication is nutrient materials containing nitrogen and phosphorus which stem from excreation of terrestial sources and release from sediment. Therefore, to improve water quality, the reduction of these nutrients loads should be indispensible. At this study, the three-dimensional numerical hydrodynamic and ecosystem model, which was developed by Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the eutrophication. The residual currents, which were obtained by integrating the simulated tidal currents over 1 tidal cycle, showed the presence of a typical counterclockwise eddies between Gyewha and Garyuk island. Density driven currents were generated westward at surface and eastward at the bottom in Saemankeum area where the fresh waters are flowing into, The ecosystem model was calibrated with the data surveyed in the field of the study area in annual average. The simulated results were fairly good coincided with the observed values within relative error of $30\%$. The simulations of DIN and DIP concentrations were performed using ecosystem model under the conditions of $40\~100\%$ pollution load reductions from pollution sources. In study area, concentration of DIN and DIP were reduced to $59\%$ and $28\%$ in case of the $80\%$ reduction of the input loads from fresh water respectively. But pollution loads from sediment had hardly affected DIN and DIP concentration, The $95\%$ input load abatement is necessary to meet the DIN and DIP concentration of second grade of ocean water quality criteria.

Technical and Strategic Approach for the Control of Cyanobacterial Bloom in Fresh Waters (담수수계에서 남조류 증식억제의 기술적, 전략적 접근)

  • Lee, Chang Soo;Ahn, Chi-Yong;La, Hyun-Joon;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Cyanobacteria (blue-green algae) are not only the first oxygenic organisms on earth but also the foremost primary producers in aquatic environment. Massive growth of cyanobacteria, in eutrophic waters, usually changes the water colour to green and is called as algal (cyanobacterial) bloom or green tide. Cyanobacterial blooms are a result of high levels of primary production by certain species such as Microcystis sp., Anabaena sp., Oscillatoria sp., Aphanizomenon sp. and Phormidium sp. These cyanobacterial species can produce hepatotoxins or neurotoxins as well as malodorous compounds like geosmin and 2-methylisoborneol (MIB). In order to solve the nationwide problem of hazardous cyanobacterial blooms in Korea, the following technically and strategically sound approaches need to be developed. 1) As a long-term strategy, reduction of the nutrients such as phosphorus and nitrogen in our water bodies to below permitted levels. 2) As a short term strategy, field application of combination of already established bloom remediation techniques. 3) Development of emerging convergence technologies based on information and communication technology (ICT), environmental technology (ET) and biotechnology (BT). 4) Finally, strengthening education and creating awareness among students, public and industry for effective reduction of pollution discharge. Considering their ecological roles, a complete elimination of cyanobacteria is not desirable. Hence a holistic approach mentioned above in combination to addressing the issue from a social perspective with cooperation from public, government, industry, academic and research institutions is more pragmatic and desirable management strategy.

A Study on Water Cycle Recovery Rate Analysis according to Rainwater Management Goals (빗물관리목표에 따른 물순환 회복률 분석 연구)

  • Jongseok Baek;Jaemoon Kim;Sanguk Cho;Dongheon Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.367-367
    • /
    • 2023
  • 2022년 중부권은 집중호우에 의해 큰 피해를 입었다. 2022년 서울의 강수량은 1775.3mm로 30년(1993~2022년) 연평균 강수량(1429.6mm)을 상회하였고, 6월~9월에 1412.4mm로 약 80%의 강수량이 집중되었다. 또한, RCP(Representative concentrate pathways) 기후변화 시나리오에 따르면 2100년까지 강수량과 강우지속시간이 지속적으로 증가할 것으로 예측하고 있다. 뿐만 아니라, 도시화는 지속적으로 불투수면적을 넓히고 있어, 도시지역의 홍수피해는 점차 가중될 것으로 판단된다. 본 연구에서는 도시지역 불투수면적의 투수화를 통해 강수량을 지표하로 침투시켜 지표유출을 저감하는 방안을 연구하였다. 대상지는 부산광역시 신도시 개발지역으로 30년 강우자료를 이용하여 무강우 지속시간, 독립 강우사상의 구분, 강우사상의 지속시간 및 분포 등을 분석하여 빗물관리목표를 설정하였다. 해당 빗물관리목표를 만족시킬 수 있는 규모의 저영향개발 시설을 적용하였고, 도시지역의 개발 전, 개발 후, 저영향개발 기술 적용 후의 단계로 구분하여 모의분석을 수행하였다. 개발 전의 물순환 회복률을 100.0%로 기준을 설정하고, 모의분석 결과 개발 이후 38.1%로 물순환 회복률이 급감하였으나, 저영향개발 기술 적용을 통해 약 92.0%로 회복되는 것을 확인하였다. 이후 연별, 월별 물수지 분석을 통해 물순환 회복률과 지표유출 저감 정도를 비교 분석하였다. 이상의 결과를 통해 저영향개발의 적용으로 도시화와 집중호우로 인한 도시지역의 수해를 일부 저감시킬 수 있을 것으로 판단되고, 대상지역 개발 전의 물수지 상태 회귀를 통해 지속가능한 발전이 가능할 것으로 기대된다.

  • PDF