• Title/Summary/Keyword: water curing temperature

Search Result 252, Processing Time 0.022 seconds

Experimental Study of Strength Development in High Flow Concrete as following of Curing Temperature (초기 재령에서의 양생 온도 조건에 따른 고유동 콘크리트의 조기강도 발현 성상에 관한 실험적 연구)

  • 이도범;김효락;박지훈;최일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.19-22
    • /
    • 2003
  • This study is carried out (1) checking the development of compressive strength of high flowing concrete at early age, changing water-binder ratio, curing temperature, and type of aggregate, and (2) suggesting basic date that helping cost and schedule plan in future construction. As the result of this study, we find that high curing temperature is effective for the development of compressive strength of concrete at early age on the condition of each water-binder ratio, and after making the compressive prediction formula related to the curing temperature by maturity, the result of the formular is similar to the temperature-compressive strength-age measured data

  • PDF

Influence of Curing Condition on Drying Shrinkage of Concrete (초기 양생조건에 따른 콘크리트의 건조수축 특성)

  • 하재담;김태홍;유재상;이종열;배수호;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.277-280
    • /
    • 2003
  • Material, mix proportion, curing condition, temperature, humidity and wind velocity have an influence on drying shrinkage of concrete. In this paper, to evaluate the effect of curing condition at early age on the drying shrinkage of concrete was investigated varying curing age for different binder. The principal conclusions from this research were as follows: 1) In case of 14 days of water curing, the drying shrinkage of concrete is smaller than 7 days of water curing, independence of type of binder. 2) In case of 4 days of water curing, the ratio of increase of drying shrinkage of concrete using fly-ash and slag powder is more remarkable than using portland cement alone, comparing the drying shrinkage of 7 days of water curing.

  • PDF

Effect of Water absorbing Curing Time on Compressive Strength of Ultra High Strength Cement Paste (포수양생 시간이 초고강도 시멘트 페이스트의 압축강도에 미치는 영향)

  • Jang, Jong-Min;Jang, Hyun-O;Choi, Hyun-Kuk;An, Dong-Hee;Kim, In-Soo;Lee, Han-Seun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.107-108
    • /
    • 2017
  • The purpose of this study is to derive the optimum water absorbing curing time. It was found that the cement paste compressive strength was increased with the water absorbing ratio up to 40%, but the compressive strength was slightly lower when the catch level was over 50%. It is considered that the superfluous water did not react and remained in the inside of the specimen, causing microcracks in the inside due to the high temperature curing, resulting in a decrease in strength. Therefore, it is considered that the optimum catcher curing time for improving the strength through catcher curing is when the catcher reaches 40%.

  • PDF

A Variation of Non-Evaporable Water and Calcium Hydroxides of Concrete with Various Curing Temperatures and Ages (양생온도와 재령에 다른 콘크리트의 결합수량과 수산화칼슘의 변화)

  • 이창수;윤인석;이규동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.273-276
    • /
    • 2003
  • The non-evaporable water and calcium hydroxides were measured by TG/DTA for studying the temperature effect on hydration of concrete mixture. The experimental parameters introduced in this study were the curing temperatures, ages and W/C ratios. The mixing temperature was also controlled to improve the efficiency of experimental work. While the mixture cured at high temperature showed the large quantity of non-evaporable water and calcium hydroxides at early age, the production rate of these hydration products was decreased as increasing the curing age, and the quantity of hydration product became smaller than that of the corresponding mixture cured at lower temperature at later age.

  • PDF

Mechanical and Physical of Antiwashout Underwater Concrete under Different Curing Temperature (양생온도에 따른 수중불분리성 콘크리트의 물리.역학적 특성)

  • 이병덕;원종필;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.301-307
    • /
    • 1997
  • This paper is evaluated for properties of aggregate and antiwashout admixture not only to minimize segregation and water contamination of underwater concrete but also to meet concrete quality required. Two antiwashout admixtures used in this study were available domestically and slump flow, pH, setting time, and filing property of fresh concrete and the compressive strength, flexural strength under water and in the air under 2 different curing conditions ($10^{\cire}C$ and $20^{\cire}C$ ) were measured. Compressive strength ratio of specimens cured in and water temperature $10^{\cire}C$ /$20^{\cire}C$ added HPEC and HPMC was 64% and 89%, respectively. Relative compressive strength of 2 kinds observed higher concrete added HPEC, 3% at $10^{\cire}C$ curing temperature, 34% at $20^{\cire}C$ . The flexural strength of specimens made under water was 1/4~1/6 of compressive strength similar to the existing data in the literature.

  • PDF

Effect of Curing Temperature on Early Age Strength Development of the Concrete Using Fly Ash (양생온도가 플라이애시를 사용한 콘크리트의 초기강도발현에 미치는 영향)

  • Han, Min-Cheol;Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.105-114
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the compressive strength of the concrete incorporating fly ash. Ordinary Portland cement(OPC). Water to binder ratio(W/B) ranging from 30% to 60% and curing temperature ranging from $-10^{\circ}{\sim}65^{\circ}C$ were also adopted for experimental parameters. Fly ash was replaced by 30% of cement contents. According to the results, strength development of concrete contained with fly ash is lower than that of plain concrete in low temperature at early age and maturity. In high curing temperature, the concrete with fly ash has higher strength development than that of low temperature regardless of the elapse of age and maturity. Fly ash can have much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products for the steam curing.

INTRAPULPAL TEMPERATURE CHANGE OF GLASS IONOMER ACCORDING TO LIGHT CURING INTENSITY AND CURING TIME (광중합기의 광도와 시간에 따른 글래스 아이오노머의 치수내 온도변화)

  • 김희량;이형일;이광원;이세준
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.387-392
    • /
    • 2001
  • When cavity floor is near the pulp, polymerization of light-activated restorations results in temperature increase. This temperature increase cause by both the exothermic reaction process and the energy absorbed during irradiation. Therefore instating base is required. Most frequently used insulating base is glass ionmer. The purpose of this study was to evaluate intrapulpal temperature changes of glass ionomer according to various curing intensity and curing time. Caries and restoration-free mandibular molars extracted within three months were prepared Class I cavity of 3$\times$6mm with high speed handpiece. 1mm depth of dentin was evaluated with micrometer in mesial and distal pulp horns. Pulp chambers were filled with 37.0$\pm$0.1$^{\circ}C$ water to CEJ. Chromium-alumina thermocouple was placed in pulp horn for evaluating of temperature changes. glass ionomer material was placed in 2mm. total curing time was 40s: continuous 40s, intermittent 20s, intermittent 10s. Glass ionomer material was cured with 300mW/$\textrm{cm}^2$, 550mW/$\textrm{cm}^2$ light curing unit. The results were as follows : 1. Temperature in pulp increased as curing unit power is increased. 2. Temperature in pulp more increased continuous emission than intermittent emission.

  • PDF

An Experimental Study on the Strength Development of High Strength Concrete in Various Curing Conditions at an Early-age (초기 양생조건에 따른 고강도 콘크리트의 강도발현에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Lee, Tea-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • This study is experimentally investigated the effects of various steam curing parameters on the early-age compressive strength development of high strength concrete (over 40 MPa) in the precast plant production. High strength concrete are used only ordinary portland cement (type I) and water-cement ratio selected 3cases (25%, 35% and 45%). Also, steam curing parameters are as followings ; (1) Preset period 2cases (3 hours and 6 hours) (2) Maximum curing temperature 3cases ($45^{\circ}C$, $55^{\circ}C$ and $65^{\circ}C$) (3) Maintenance time of curing temperature 3cases (4 hours, 6 hours and 8 hours) (4) Maximum rate of heating and cooling $15^{\circ}C$/hr. Initial setting time and adiabatic temperature rising ratio of these concrete according to water-cement ratio are tested before main tests and examined the compressive strength development for the steam curing parameters. Also compressive strength are compared with optimum steam curing condition and standard curing at test ages. As test results, the optimum steam curing conditions for high strength concrete(over 40 MPa) are as followings. (1) Preset period ; over initial setting time of concrete (2) Maximum curing temperature ; bellow $55^{\circ}C$ (3) Maintenance time of curing temperature ; bellow 6hours. Also strength development of steam curing concrete show in the reversed strength at 28 days. It is to propose an efficient steam curing condition for high strength concrete in the precast method.

Optimum Curing and Full-out Velocity in the Rubber Extrusion Process for Electric Cable Manufacture (전선피복용 고무압출가공 공정의 최적 경화 및 선출 속도)

  • Kim, Duk-Joon;Choi, Sang-Soon;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 1998
  • In electric cable industries, the curing extent of the rubber materials covering the electric cores gives an significant effect on their final performance. The curing extent of rubber is controlled mostly by pull-out velocity of cable in the extrusion process. The final curing extent may be different for different radial positions inside the rubber because of the non-uniform temperature distributions during the curing process. In this contribution, the prediction of curing extent distribution throughout the radial direction of rubber is represented when the cable is passing through the steam curing zone with a fixed pull-out velocity. The prediction of the optimum pull-out velocity for the desired curing extent distribution is also reported. The steady-state heat balance was developed for the curing and cooling processes in which the pull-out rubber was cured by high temperature steam and then cooled by ambient water. A few essential material properties such as density, specific heat, and thermal conductivity were measured to analyze the temperature distribution during the curing and cooling processes. The times to reach 90% curing extent at varying temperatures were measured and used to determine the final cure extent distribution inside the rubber.

  • PDF

A Study on the Curing of Concrete in field (콘크리트의 현장양생효과에 관한 연구)

  • 윤충섭;조병진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.46-58
    • /
    • 1984
  • This study was carried out to investigate the compressive strength and the other effects varying to seasons and curing days on the wet curing conditions of the plain concrete. The results obtained are summarized as follows; 1. The longer the wet curing days and the higher the temperature, the greater the compressive strength was expected. 2.。$_2$8, compressive strength of concrete at 28 days under the dry curing conditions showed a range in 64-76% of that under the wet curing conditions. 3. The seasonal variations in the compressive strength under the wet curing showed in order of summer>spring=autumn>winter, and that under the dry curing were in order of spring ≒autumn> summer> winter. 4. In order to obtain 90% of the design compressive strength, 7 days in spring or autumn and 2 weeks of the wet curing in summer were required. 5. The compressive strength of concrete under the wet curing by using wet straw bag cover was almost the same as that of water curing method. 6. Under the wet curing conditions, the higher the temperature, the greater the effect of the curing of concrete was obtained, however, the compressive strength of concrete was decreased under relatively higher (over 15$^{\circ}$ C) and lower temperature (below 4$^{\circ}$C). 7. Freezing damage was occured when temperature was below 0$^{\circ}$ C and humidity was relatively high. 8. A considerable differnce between estimation of $^{\circ}$$_2$8 from $^{\circ}$7 and measured one was appeared in case of the dry curing conditions. Oregon formula was appeared to be acceptable under the wet curing conditions. 9. In relationship between $^{\circ}$$_2$8 and $^{\circ}$7~, $^{\circ}$28=1. 52 $^{\circ}$7 under the wet curing conditions except winter season, and $^{\circ}$$_2$8 =(1.39-1, 48)$^{\circ}$7 under the dry curing conditions were shown.

  • PDF