• Title/Summary/Keyword: water curing

Search Result 936, Processing Time 0.034 seconds

A Study on the Effect of Accelerated Curing on 28-Days Compressive Strength of Concrete (촉진양생이 콘크리트의 28일 압축강도에 미치는 영향에 관한 연구)

  • 최세규;유승룡;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.141-148
    • /
    • 1996
  • The pulished works on Accelerated Curing Effect were generally performed around from 1960 to 1970th century for 18 to 24 hours - total curing periods. It is not possible to define the effect of temperature rise because those results were obtaine mainly by using the manually operated steam-curing tank. Thus, it may not be available to apply those data immediately on the domestic PC wall production line. The testing specimens were made from the standard mix proportion according to those of domestic PC factories to establish a basic data for the Accelerated Curing Effect. The experimental tests were conducted according to the conditions of each sub-curing periods. By comparing the results of compression tests on de-molded and 28-day water-curing specimens, we find that the most effective curing condition to obtain more than the required design strength after 28 day of water curing may be as follows: the presteaming period does not affect seriously and less than$30^{circ}C/hr$- the rate of temperature rise andless than $82^{circ}C$ - maximum temperature are necessary. It seems that post-curing procedure is very important factor to increase the effect of accelerated curing.

A Study on the Optimization of Curing Technology for Improving Properties of Concrete Pavement (콘크리트 포장의 내구성 향상을 위한 양생제 시공기술 최적화 연구)

  • Park, KwonJea;Ryu, SungWoo;Kim, HyungBae;Joo, YoungMin;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.11-20
    • /
    • 2013
  • PURPOSES : This study is to suggest time to spray curing compound, the amount of curing compound, and the number of times to spray curing compound based on indoor tests. METHODS : Based on the literature review, two methods are used in this study, One is test for water retention of concrete curing material and the other is test for abrasion resistance of concrete surfaces by the rotating-cutter method. Through those methods, curing compound was evaluated. RESULTS : The result of the laboratory experiment for time to spray curing compound indicates that 30 minutes after placing concrete is optimal. For the amount of curing compound, $0.5{\ell}/m^2$ is the minimum quantity for both concretes. Through test of the number of times to spray curing compound, method to spray the whole amount of curing compound in twice is more efficient than it to spray the whole amount at a time. Also, method of separately 30-50 minutes spray is better than method of separately 10-30 minutes spray. CONCLUSIONS : From the testing results, it can be proposed that optimum time to curing compound is $30{\pm}15$ minutes, $0.5{\ell}/m^2$ is efficient for spraying the whole amount of curing compound at a time, and $0.4{\ell}/m^2$ is the best for spraying the whole amount of curing compound in twice, which sprays it in 20 minutes after 30 minutes from placing concrete.

Physical and Mechanical Properties of Cement Mortar Brick with Loess and Fly Ash (황토와 플라이 애시를 혼입한 시멘트 모르타르 벽돌의 물리 · 역학적 특성)

  • Lim, Sung-Soo;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.57-63
    • /
    • 2004
  • This study was performed to evaluate the engineering properties of cement mortar brick with loess and fly ash. The unit weight was in the range of $2,068{\sim}2,137\;kgf/m^{3}$ and $1,899{\sim}2,045\;kgf/m^{3}$ in water and dry curing, respectively It was decreased with increasing the loess content. The absorption ratio was in the range of $5.2{\sim}13.1%$ and $8.5{\sim}13.2%$ in water and dry curing, respectively. The compressive strength was decreased with increasing the loess content. The compressive strength of the 193 $kgf/m^{2}$ in water and 188 $kgf/m^{2}$ in dry curing at the curing age 28 days of the binder volume ratio 35% was exceeded in 163 $kgf/m^{2}$ of standard compressive strength about cement bricks. The carbonation depth was in the range of $0.9{\sim}1.4$ mm, $1.2{\sim}3.6$ mm, $1.4{\sim}6.7$ mm and $2.4{\sim}12.5$ mm in dry curing of curing age 14days, 28days, 90days and 360days, respectively.

A Study on the Strength Development Tendencies of Concrete Cores due to the Effect of Age (콘크리트 코어의 재령에 따른 강도 발현 성향에 관한 연구)

  • 권영웅;유재은;신정식;이성용;김민수;박송철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.751-756
    • /
    • 2003
  • This Paper concerns the compressive strength development tendencies of concrete according to their Ages and curing conditions. The test results are on follows; (1) The compressive strength development of concrete appears larger according to the curing conditions under water curing, condition structural curing and field curing conditions. (2) The compressive strength development rate of concrete after 28 days' curing becomes smaller, but the case of lower strength of concrete not.

  • PDF

Characteristic of Compressive Strength with Respect to Curing Conditions in Cement Mortar of Content Red Mud (레드머드를 대체한 시멘트 모르타르의 양생방법에 따른 압축강도 특성)

  • Hwang, Byoung Il;Kang, Hye Ju;Lee, Hoo Seok;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.13-14
    • /
    • 2017
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. This study is to investigate characteristic with respect to curing conditions according to the red mud content. The results best of best showed that the water curing compressive strength better than atmospheric curing, steam curing.

  • PDF

The Charncteristics of Organic Sludge in Curing Equipment (유기성 슬러지 양생장치의 건조특성)

  • Jung, Ho-Yun;Park, Jae-Sung;Kang, Jin-Soo;Yun, Hee-Chul;Lee, Yeon-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3173-3177
    • /
    • 2007
  • Recently, we have many problems on the process of the sludge. In past, the sewage sludge was treated by reclaimed land or thrown away in the sea. But these methods caused environmental pollution. Today, many researchers are studying various methods for reducing its volume. One of these method, this study is to reduce the moisture of sewage sludge and to solidify it using a dryer and curing equipment. In this research, we investigated about design parameter and operation condition of the equipment. The curing equipment reduces the percentage of water content from 30% of dryer to 10%. So, we have to study the curing characteristics and performance of curing equipment. For example, there are internal flow characteristics and change of the percentage of water content. And we investigated the change of data at outlet along the initial condition, temperature, humidity and air flow. Using this data, we achieve the experimental results of curing efficiency by each geometry and operating condition. And we also investigated numerical analysis of internal flow using CFD code. This research is basic study for optimal design of the curing equipment.

  • PDF

Microstructure Properties of High Strength Concrete Utilizing EVA with Micro Particles (EVA 마이크로 입자를 활용한 고강도 콘크리트의 미세구조특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.97-101
    • /
    • 2005
  • High strength concretes utilizing EVA with micro particles were prepared by varying polymer/binder mass ratio and curing conditions with a constant water/binder mass ratio of 0.3. The EVA modified concretes on the compressive and flexural strength, microstructure, ultrapulse modulus in curing condition(dry and water curing) were studied. Also, scanning electron microscope analysis(SEM) was performed to reveal the presence of polymer film and cement hydrates in the concrete. The compressive strength of the EVA modified concretes cured at water conditions ere higher than that of the EVA modified concretes cured at dry conditions. But, the flexural strength of the specimens cured at dry conditions were higher than that of the specimens cured at water conditions. Due to the interaction of the cement hydrates and polymer film, an interpenetrating network originated in which the aggregates were embedded. The curing of the polymer modified concrete involves two step of cement hydrates and polymer modification, and cement hydrates was promoted in water conditions and polymer film formation take place when water evaporates and was thereby was favored in dry conditions. By SEM analysis, influences of polymer modification was strengthening of the transition zone between the aggregate and the paste, and the porosity of transition zone decreases. By spring analysis, it could known that polymer film affects in porosity decrease and strengthening of transition zone.

  • PDF

A Study on the Early Evaluation of Compressive Strength of Ultra-High Strength Concrete Using 50, 60℃ Warm Water Curing (50, 60℃ 온수양생을 이용한 초고강도 콘크리트의 강도 조기 평가)

  • Lee, Jong-Seok;Myung, Ro-Oun;Paik, Min-Soo;Gong, Min-Ho;Ha, Jung-Soo;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.73-75
    • /
    • 2011
  • In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in 50, 60℃ warm water was investigated. W/B of 32, 23.5, 19% 3 levels were examined. And the specimens were cured in 50, 60℃ warm water. The results showed reliable accuracy by regression relation between 28day strength cured by standard curing method and accelerated strength of the concrete cured in warm water. And the specimens cured in 50, 60℃ showed more high strength development. So 60℃ curing could be considered in order to reduce the measurement error. As a result, the feasibility of 50, 60℃ warm water curing method at high strength level was confirmed.

  • PDF

Evaluation of Fundamental Properties and Chloride Penetration Resistance of Concrete using Superabsorbent Polymers (고 흡수성 폴리머를 혼입한 콘크리트의 기초 물성 및 염화물 침투 저항성 평가)

  • Lee, Chan-Kyu;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.50-59
    • /
    • 2020
  • Superabsorbent Polymer (SAP) expands inside concrete by absorbing water and contracts as it discharges water. Through this process, concrete can achieve the internal curing effect, but the space occupied by the expanded SAP remains as a void. In this study, the effects of SAP internal curing and voids were evaluated by evaluating the fundamental properties and chloride penetration resistance of SAP mixed concrete. Also, to evaluate the internal curing effect by SAP, the tests were carried out under water and sealed curing conditions, respectively. From the result, the compressive strength of water curing did not differ significantly according to the mixing ratio of SAP. In the case of sealed curing, however, the compressive strength tended to increase as the mixing ratio of SAP increased. The internal curing effect of sealed curing was considered to have influenced the increase in compressive strength. In the case of the chloride diffusion coefficient, the diffusion coefficient tended to decrease as the mixing ratio of SAP increased. In particular, as the sealed curing is applied, the chloride penetration resistance is further improved due to internal curing effect. If the curing conditions are different, it is considered inappropriate to estimate the chloride penetration resistance by the surface electrical resistivity.

Effect of temperature on the behavior of self-compacting concretes and their durability

  • Salhi, M.;Li, A.;Ghrici, M.;Bliard, C.
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.277-288
    • /
    • 2019
  • The formulation of self-compacting concretes (SCC) and the study of their properties at the laboratory level were currently well mastered. The aim of this work is to characterize SCC under hot climatic conditions and their effects on the properties of fresh and hardened SCC. Particularly, the effect of the initial wet curing time on the mechanical behavior such as the compressive strength and the durability of the SCCs (acid and sulfate attack) as well as the microstructure of SCCs mixtures. In this study, we used two types of cement, Portland cement and slag cement, three water/binder (W/B) ratio (0.32, 0.38 and 0.44) and five curing modes. The obtained results shows that the compressive strength is strongly influenced by the curing methods, 7-days of curing in the water and then followed by a maturing in a hot climate was the optimal duration for the development of a better compressive strength, regardless of the type of binder and the W/B ratio.