• Title/Summary/Keyword: water contribution

Search Result 650, Processing Time 0.034 seconds

Seasonal Characteristics of Atmospheric PM10 and PM2.5 in Iksan, Korea (익산지역 대기 중 PM10과 PM2.5의 계절별 특성)

  • Kang, Gong-Unn;Kim, Nam-Song;Shin, Eun-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.1
    • /
    • pp.29-43
    • /
    • 2011
  • The seasonal characteristics of atmospheric particulate matter (PM) were evaluated through the measurement of $PM_{10}$ (particles with an aerodynamic diameter of less than 10 ${\mu}m$) and $PM_{2.5}$ (particles with an aerodynamic diameter of less than 2.5 ${\mu}m$) collected in the downtown area of Iksan city over roughly two weeks in each season of 2004. During the sampling period, 54 samples of $PM_{10}$ and $PM_{2.5}$ were collected and then measured for mass concentrations of PM and its water-soluble inorganic ion species. The concentrations of $PM_{10}$ and $PM_{2.5}$ were highly variable on a daily time scale in all seasons, especially in fall. Annual concentrations of $PM_{10}$ and $PM_{2.5}$ were $54.7{\pm}21.6\;{\mu}g/m^3$ and $34.0{\pm}13.4\;{\mu}g/m^3$, respectively. The daily concentrations of the analyzed ions similarly showed a pronounced variation, although a difference between seasons existed. Among them, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the most abundant ions in all seasons, contributing up to 32% of $PM_{10}$ and 39% of $PM_{2.5}$. The contribution of $SO_4^{2-}$ and $NO_3^-$ showed a seasonal variation, as $SO_4^{2-}$ was the highest during spring and summer and $NO_3^-$ was the highest during fall and winter. Non-seasalt $SO_4^{2-}$ and $NO_3^-$ were found to exist mainly as neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ due to the high concentration of $NH_4^+$ in PM samples, which were a major form of airborne PM in all seasons. Seasonal characteristics of $PM_{10}$ and $PM_{2.5}$ in Iksan were described in relation to the temporal variations of daily concentration of PM and its inorganic ion species including inter-particle reactions.

A Study on Economically-Efficient Binder Combination of 80MPa Ultra High Strength Concrete (경제성을 고려한 80MPa급 초고강도 콘크리트의 결합재 조합에 대한 검토)

  • Park, Chun-Jin;Koh, Kyung-Teak;Ryu, Gum-Sung;Ahn, Gi-Hong;Ahn, Sang-Ku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 2015
  • Silica fume is generally adopted as admixture for Ultra High Strength Concrete (UHSC) owing to its remarkable contribution to the strength and durability but increases significantly the fabrication cost of UHSC. Accordingly, this study investigates the replacement of silica fume by blast furnace slag (BS) and fly ash (FA) in order to lower the fabrication cost of 80MPa-UHSC. To that goal, experiment is conducted on the mix proportions of mortar in terms of its binder combination, water-to-binder ratio (W/B) and unit binder content. Based on the experimental data, a mix design of concrete is derived and its properties are verified. The results reveal that a W/B of 21% and unit binder content of $720kg/m^3$ are appropriate to achieve 80MPa-UHSC using a binder composed of 60% of OPC, 30% of BS and 10% of FA. The properties of the corresponding UHSC are seen to be satisfactory with a slump flow of 715mm and compressive strength of 97MPa at 28days. The application of the binder combination derived in this study is analyzed to reduce the cost by 50% of binder compared to the mix using silica fume while realizing equivalent performance.

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF

Organic Matter Sources in a Reservoir (Lake Soyang); Primary Production of Phytoplankton and DOC, and External Loading (식물플랑크톤의 세포외배출유기물을 고려한 소양호의 1차생산과 유기물 부하)

  • Nam, Kung-Hyun;Hwang, Gil-Son;Choi, Kwang-Soon;Kim, Chul-Goo;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.166-174
    • /
    • 2001
  • The autochthonous and allochthonous organic carbon loading were measured in Lake Soyang, to estimate the amount of carbon loading into the lake and the contribution of their sources to tile lake's carbon loading. Autochthonous carbon loading was estimated from phytoplankton primary production with the extracellular organic carbon (EOC). Allochthonous loading was determined by measuring dissolved organic carbon (DOC) and particulate organic carbon (POC) concentration in the main inflowing Soyang River. Both autochthonous and allochthonous organic carbon loading were high during the svmmer, from July to September, and accounted for 43.2% and 71.7% of the annual loading, respectively. Primary productivity was elevated up to $1,000\;mgC\;m^{-2}\;d^{-1}$ during summer and lowest in winter. EOC production from phytoplankton was also large in summer, resulting in a high DOC concentration in the lake water. Primary production of phytoplankton and allochthonous organic matter loading from the watershed contributed to 53.6% and 46.4% of total loading, respectively. The EOC production accounted far $4.4{\sim}21.2%$ of POC primary production, implying that EOC production of phytolankton must be considered in estimation of primary production.

  • PDF

Enhancement of flood stress tolerance for upland-adapted cereal crops by the close mixed-planting with rice

  • Iijima, Morio;Awala, Simon K;Hirooka, Yoshihiro;Yamane, Koji
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.44-44
    • /
    • 2017
  • Recently, the occurrences of extreme flooding and drought, often in the same areas, have increased due to climate change. We tested the hypothesis that wetland species could help upland species under flood conditions; that is, the roots of wetland crops may supply $O_2$ to the roots of upland crops by a series of experiments conducted in both humid Japan and semi-arid Namibia (See Iijima et al, 2016 and Awala et al, 2016). Firstly, flooding tolerance of upland-adapted staple crops-pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) mix-cropped with rice (Oryza spp.) was investigated in glasshouse and laboratory experiments in Japan. We found a phenomenon that strengthens the flood tolerance of upland crops when two species-one wetland and one drought tolerant-were grown using the mixed cropping technique that results in close tangling of their root systems, hereinafter referred to "close mixed-planting". This technique improved the photosynthetic and transpiration rates of the upland crops subjected to flood stress ($O_2$-deficient nutrient culture). Oxygen transfer was suggested between the two plants mix-cultured in water, implying its contribution to the phenomenon that improved the physiological status of upland crops under the simulated flood stress. Secondly, we further tested whether this phenomenon would be expressed under field flood conditions. The effects of close mixed-planting of pearl millet and sorghum with rice on their survival, growth and grain yields were evaluated under controlled field flooding in semi-arid Namibia during 2014/2015-2015/2016. Single-stand and mixed plant treatments were subjected to 11-22 day flood stress at the vegetative growth stage. Close Mixed-planting increased seedling survival rates in both pearl millet and sorghum. Grain yields of pearl millet and sorghum were reduced by flooding, in both the single-stand and mixed plant treatments, relative to the non-flooded upland yields, but the reduction was lower in the mixed plant treatments. In contrast, flooding increased rice yields. Both pearl millet-rice and sorghum-rice mixtures demonstrated higher land equivalent ratios, indicating a mixed planting advantage under flood conditions. These results indicate that mix-planting pearl millet or sorghum with rice could alleviate flood stress on dryland cereals. The results also suggest that with this cropping technique, rice could compensate for the dryland cereal yield losses due to field flooding. Mixed cropping of wet and dryland crops is a new concept to overcome flood stress under variable environmental conditions.

  • PDF

Synecology and Habitat Environment of Coastal Sand Dune Vegetation in Uido (Island), Korea (우이도 해안사구식생의 군락생태와 입지환경)

  • Chun, Young-Moon
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.1
    • /
    • pp.56-65
    • /
    • 2007
  • The aim of this study is to provide a fundamental data which can be applied to management conservation, and restoration of coastal sand dune vegetation by determining the classification and distribution of community, and ecological characteristics of the habitat. This research was performed by the Braun-Blanquet's method. The coastal sand dune vegetation of Uido (I.) was composed with 9 communities as follows : Vitex rotundifolia community, Zoysia macrostachya community, Carex kobomugi community, Iachaemum anthephoroides community, Imperata cylindrica var. koenigii community, Carex pumila community, Calystegia soldanella community Messerschmidia sibirica community and Pinus thunbergii community, the evergreen needle-leaved forest. The constancy degree showed high in Calystegia soldanella (77%), Vitex rotundifolia (74%), Carex kobomugi (66%), Zoysia macrostachya (50%) and Imperata cylindrica var. koenigii (47%). However the highest constancy degree Calystegia soldanella has, it turned out to have low net contribution degree (NCD) in each community. In terms of the distribution and growth feature of the composition species in the coastal sand dune, Vitex rotundifolia, Carex kobomuri and Zoysia macrostachya were widely distributed from unstable sand dune to stable one but Iachaemum anthephoroides and Imperata cylindrica var. koenigii were mainly found at the stable sand dune. Carex kobomugi was especially dominant at the unstable sand dune where the sand continued to be deposited. On the other hand, Carer pumila and Messerschmidia sibirica showed regional distributions around fresh water.

An Impact Assessment on Atmospheric Dispersion of Pesticide using AGDISP Model (AGDISP모델을 이용한 농약의 대기확산 영향평가)

  • Kim, Jeong-Hwan;Koo, Youn-Seo;Lee, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.547-556
    • /
    • 2013
  • Recently, golf courses have increased over the years because golf became popular leisure sport. Various environmental problems have been then issued by a golf course during constructing and running them. A problem of pesticide, which is serious among various environmental problems, from golf course has harmful effect on surrounding area and makes human suffer from acute and chronic diseases. Pesticides are used for the cost-effective managing of golf course and the amount of pesticides also increases as the number of golf course increase. Since the assessment of pesticides on near-by surrounding has been focused on water and soil media, studies related to atmospheric dispersion have been hardly attempted. The method to assess an impact of pesticide nearby agricultural production by the atmospheric dispersion using AGDISP(AGricultural DISPersal) model was developed and applied to the actual planned golf course located in Hongcheon, Gangwon. For implementing AGDISP, parameters were investigated from the golf course's land use planning map, pesticide spray device, Hong-Cheon weather station and etc. First of all, a kind of pesticide, a form of spraying pesticide, geographical features, weather data, and distance(golf course to plantation) were investigated to understand how to work these parameters in AGDISP. Restricted data(slope angle, droplet size distribution and solar insolation) sensitivity analysis of these parameters to estimate effect of pesticide nearby a plantation and a high relative contribution data of analyzed data was selected for input data. Ethoprophos was chosen as the pesticide used in the golf course and the amounts of pesticide deposition per annual agricultural productions were predicted. The results show that maximum amount of pesticide deposition through atmospheric dispersion was predicted $2.32{\mu}/m^2$ at 96 m where the nearest organic plantation exists. The residues of pesticide were also estimated based on the annul production of the organic and the deposition amount of the pesticide. Consequently, buckwheat, wheat and millet were likely to exceed maximum residue limits for pesticides in foods(MRL) and sorghum, corn and peanut were likely to exceed MRL by organic farming as well.

Study on the Yellow Sandy Dust Phenomena in Korean Peninsula and Chemical Compositions in Fine Particles at Background Sites of Korea. (한반도의 황사 관측현황 및 배경지역 미세먼지의 화학적 조성에 관한 연구)

  • Baek Kwang-Wook;Chung Jin-Do
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.9-18
    • /
    • 2004
  • In this study, the observation data for the yellow sandy dust phenomena from the year 1999 to 2003 at background sites in Korea were collected at Global Atmospheric Observatory at An-Myeon island and its temporal variation were analyzed. The chemical characteristics of the fine particles were also analyzed in order to evaluate sources of the yellow sandy dust particles. The results showed that the monthly average mass concentration of the fine particles was the highest in springtime and the lowest in summertime in general. The magnitude of its variation was also the highest in March in which the occurrence of yellow sandy dust was the most frequent and thus the number of samples was the largest, while the lowest in June through September. The yearly variation of ion components contributions to the total mass concentration of the fine particles was slowly decreasing, showing that $63\%$ in 1999, $59\%$ in 2000 and $56\%$ in 2003. The most prevalent ion components in the fine particles were found to be $NO_3$ and $SO_4^{2-}$, which are known to be source materials of acidic precipitation, and $NH_4^+$, a neutralizing material of the acid precipitation. Relative proportion of metal components in the fine particles was calculated as $14\%$ in average, and their concentrations are in an order of Fe > Al > Na > Ca > Zn > Pb > Cu > Mn > Ni > Cd > Cr > Co > U. The results indicated that main sources of the metals was soil-originated Fe, Al, Ca, and Mg, and the contribution of anthropogenic air Pollution-originated Zn, Pb, Cu, Mn were also high and keep slightly increasing. Statistical analysis showed that the chemical components could be divided into soil-originated group of Mg, Al, Ca, Fe, and Mn and air pollution-originated group of $NO_3$, Zn, Pb, and they are occupying more than $60\%$of all the components in the dusty sand. The results explain that An-Myeon island is more influenced by soil-originated source than ocean-originated one and also the influencing strength of anthropogenic poilution-originated source is less than $50\%$ of that of soil-originated sources. Compared to non-yellow sandy period, the yellow sandy dust period showed that the amounts of soil-originated $Mg^{2+}$ and $Ca^{2+}$ and ocean-originated $Na^+$ and $Cl^-$ were increased to more than double and the metals of Mg, Al, Ca, Fe were also highly increased, while micro metal components such as Pb, Cd, Zn, which have a tendency of concentrating in air, were either decreased or maintained at nearly constant level. In the period of yellow sandy dust, a strong positive correlation was observed between water soluble ions and between metals in terms of its concentration, respectively. Factor analysis showed that the first group being comprised of about $43\%$ of the total inorganic components was affected by soil and they are ions of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ and metals of Na, Fe, Mn and Ni. The result also showed that the metals of Mg and Cr were classified as second group and they were also highly affected by soil sources.

Feed Resources for Animals in Asia: Issues, Strategies for Use, Intensification and Integration for Increased Productivity

  • Devendra, C.;Leng, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.303-321
    • /
    • 2011
  • The availability and efficient use of the feed resources in Asia are the primary drivers of performance to maximise productivity from animals. Feed security is fundamental to the management, extent of use, conservation and intensification for productivity enhancement. The awesome reality is that current supplies of animal proteins are inadequate to meet human requirements in the face of rapidly depleting resources: arable land, water, fossil fuels, nitrogenous and other fertilisers, and decreased supplies of cereal grains. The contribution of the ruminant sector lags well behind that of non-ruminant pigs and poultry. It is compelling therefore to shift priority for the development of ruminants (buffaloes, cattle, goats and sheep) in key agro-ecological zones (AEZs), making intensive use of the available biomass from the forage resources, crop residues, agro-industrial by-products (AIBP) and other non-conventional feed resources (NCFR). Definitions are given of successful and failed projects on feed resource use. These were used to analyse 12 case studies, which indicated the value of strong participatory efforts with farmers, empowerment, and the benefits from animals of productivity-enhancing technologies and integrated natural resource management (NRM). However, wider replication and scaling up were inadequate in project formulation, including systems methodologies that promoted technology adoption. There was overwhelming emphasis on component technology applications that were duplicated across countries, often wasteful, the results and relevance of which were not clear. Technology delivery via the traditional model of research-extension linkage was also inadequate, and needs to be expanded to participatory research-extension-farmer linkages to accelerate diffusion of technologies, wider adoption and impacts. Other major limitations concerned with feed resource use are failure to view this issue from a farming systems perspective, strong disciplinary bias, and poor links to real farm situations. It is suggested that improved efficiency in feed resource use and increased productivity from animals in the future needs to be cognisant of nine strategies. These include priorities for feed resource use; promoting intensive use of crop residues; intensification of integrated ruminant-oil palm systems and use of oil palm by-products; priority for urgent, wider technology application, adoption and scaling up; rigorous application of systems methodologies; development of adaptation and mitigation options for the effects of climate change on feed resources; strengthening research-extension-farmer linkages; development of year round feeding systems; and striving for sustainability of integrated farming systems. These strategies together form the challenges for the future.

Deposition Process of Sulfate and Elemental Carbon in Japanese and Thai Forests

  • Sase, Hiroyuki;Matsuda, Kazuhide;Visaratana, Thiti;Garivait, Hathairatana;Yamashita, Naoyuki;Kietvuttinon, Bopit;Hongthong, Bundit;Luangjame, Jesada;Khummongkol, Pojanie;Shindo, Junko;Endo, Tomomi;Sato, Keiichi;Uchiyama, Shigeki;Miyazawa, Masamitsu;Nakata, Makoto;Lenggoro, I. Wuled
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.246-258
    • /
    • 2012
  • Particulate matter deposited on leaf surfaces may cause erosion/abrasion of epicuticular wax and the malfunction of stomata. However, the deposition processes of particulate matter, such as elemental carbon (EC), has not been studied sufficiently in Asian forest ecosystems. Deposition processes for particulate ${SO_4}^{2-}$ and EC were studied in a Japanese cedar forest in Kajikawa, Niigata Prefecture, Japan, and in a dry evergreen forest and a dry deciduous forest in Sakaerat, Nakhon Ratchasima province, Thailand. The ${SO_4}^{2-}$ fluxes attributed to rainfall outside the forest canopy (RF), throughfall (TF), and stemflow (SF) showed distinct seasonalities at both sites, increasing from November to February at the Kajikawa site and in March/April at the Sakaerat site. Seasonal west/northwest winds in winter may transport sulfur compounds across the Sea of Japan to the Kajikawa site. At the Sakaerat site, pollutants suspended in the air or dry deposits from the dry season might have been washed away by the first precipitations of the wet season. The EC fluxes from RF and TF showed similar variations by season at the Kajikawa site, while the flux from TF was frequently lower than that from RF at the Sakaerat site. Particulate matter strongly adsorbed onto leaf surfaces is not washed away by rainfall and contributes to the EC flux. At the Kajikawa site, Japanese cedar leaf surfaces accumulated the highest levels of particulate matter and could not be neglected when calculating the total flux. When such leaf-surface particles were considered, the contribution of dry deposition to the total EC flux was estimated to be 67%, 77%, and 82% at the Kajikawa site, and at the evergreen and deciduous forests of the Sakaerat site, respectively. Leaf-surface particles must be included when evaluating the dry and total fluxes of particulate matter, in particular for water-insoluble constituents such as EC.