• Title/Summary/Keyword: water column structure

Search Result 182, Processing Time 0.031 seconds

Non-destructive Inspection of Top Down Construction Joints of Column in SRC Structure using Ultrasonic Method (초음파법을 이용한 콘크리트 역타시공 이음부위의 비파괴검사)

  • 박석균;백운찬;이한범;김명모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.811-816
    • /
    • 2000
  • The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of column in SRC structure in this study. As a result it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints.

  • PDF

Potential of Argo Drifters for Estimating Biological Production within the Water Column

  • Son, Seung-Hyun;Boss, Emmanuel;Noh, Jae-Hoon
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.121-124
    • /
    • 2006
  • Argo drifters provide information of the vertical structure in the water column and have a potential for the improvement of understanding phytoplankton primary production and biogeochemical cycles in combination with ocean color satellite data, which can obtain the horizontal distribution of phytoplankton biomass in the surface layer. Our examples show that using Argo drifters with satellite-measured horizontal distribution of phytoplankton biomass at the sea surface allow an improved understanding of the development of the spring bloom. The other possible uses of Argo drifter are discussed.

Effect of cooling rate on the post-fire behavior of CFST column

  • Afaghi-Darabi, Alireza;Abdollahzadeh, Gholamreza
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.281-294
    • /
    • 2019
  • The post-fire behavior of structural elements and the cooling process has always been one of the main concerns of the structural engineers. The structures can be cooled at different rates, where they affect the structure's behavior. In the present study, a numerical model has been developed using the Abaqus program to investigate the effect of cooling rate on the post-fire behavior of the CFST column. To verify the model, results of an experimental study performed on CFST columns within a full heating and cooling cycle have been used. In this model, coMParison of the residual strength has been employed in order to examine the behavior of CFST column under different cooling rates. Furthermore, a parametric study was carried out on the strength of steel and concrete, the height of the specimens, the axial load ratio and the cross-sectional shape of the specimen through the proposed model. It was observed that the cooling rate affects the behavior of the column after the fire, and thus the higher the specimen's temperature is, the more effect it has on the behavior. It was also noticed that water cooling had slightly more residual strength than natural cooling. Furthermore, it was recognized from the parametric study, that by increasing the strength of steel and concrete and the load ratio, as well as modifying the cross-sectional shape from circular to square, residual strength of column at the cooling phase was less than that of the heating phase. In addition, with reducing column height, no change was witnessed in the column behavior after the cooling phase.

Exploring the Dynamics of Dissolved Oxygen and Vertical Density Structure of Water Column in the Youngsan Lake (인공호소인 영산호의 용존산소 분포와 수층 성층구조의 연관성 분석)

  • Song, Eun-Sook;Cho, Ki-An;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • The Youngsan Lake was constructed to supply agricultural water to the extensive rice fields in the basin of the lake in 1981. Hypoxia has often developed in the bottom water of the lake during the warm season although the water depth is relatively shallow (< 16 m). We investigated the spatial and temporal variations of dissolved oxygen (DO) and physical properties such as water temperature, salinity and turbidity to elucidate the effects of change in physical properties on DO dynamics in the lake. Vertical profiles of DO, temperature, salinity, and water density were also explored to verify the development of stratification in relation to DO variation in the water column. Hypoxia (DO < $2mg\;L^{-1}$) was not observed in the upper regions whereas hypoxia was detected in the lower regions during the warm season. Thermocline generally developed in the lower regions during the warm season unlike the previous studies in which no thermocline was observed. However, water column was well mixed when freshwater water was discharged from the reservoir through the sluice gate of the dike. DO concentrations also decreased when halocline or pycnocline developed during the dry season suggesting that the vertical stratification of water column affects DO dynamics although the water depth is shallow in the Youngsan lake.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.

Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

  • Biao Liu;Zhengzhong Wang;Bo Zhang;Ningjun Du;Mingxia Gao;Guoliang Bai
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.221-236
    • /
    • 2023
  • In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

Treatment Performance and Microbial Community Structure in BAC-process Treating Contaminated Groundwater by Water-soluble Cutting Oil (생물활성탄을 이용한 절삭유로 오염된 지하수의 처리특성과 미생물군집구조 해석)

  • Lim Byung-Ran;Bae Ci Ae;Lim Ho-Ju;Cho Chang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.71-76
    • /
    • 2006
  • Treatment performance and microbial community structure were investigated in water-soluble cutting oil treatment process using biological activated carbon. DOC removal in BACI column at $15^{\circ}C$ was higher than at $25^{\circ}C$, but those of BAC3 column after 60days was high at$25^{\circ}C$. Also, quinone content of first-step reactors at $25^{\circ}C$ and $15^{\circ}C$ was much the same, but those of the third-step reactor at $25^{\circ}C$ was higher than at $15^{\circ}C$. The dominant type of two apparatus was ubquinone (UQ)-l 0 followed by UQ-8. Menaquinones were detected from $25^{\circ}C$ apparatus and effluent. This suggested that DOC removal at $25^{\circ}C$ was advanced degradation by attached microorganisms on the activated carbon surface. The DOC removal in long-term activated carbon apparatus increased with going in BAC3 column. This indicated the influent of POC was a result of DOC removal efficiency decrease. Integrated DOC removal from start point in experiment to break point and quinone content were showed a tendency of increasing with going last-step activated carbon apparatus. Therefore, the biological activated carbon apparatus used by this study was effective treatment process in contaminated groundwater by water-soluble cutting oil.

Performance Evaluation of the Underwater Structure which used a Epoxy Panel (에폭시 섬유판넬을 이용한 수중구조물의 단면보수시스템에 대한 성능평가)

  • 박준명;홍성남;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.343-346
    • /
    • 2003
  • Confirmation of a damage degree and repair about a damage part are very hard for an underwater structure. And quality control of a construction is very complicated even if repair work is carried out on a damaged structure because repair work is carried out in water. If repair work is carried out while a defect part of the structure which there is in water keeps dry state, a efficient of repair is maximized. However, as for the repair technology about an underwater structure, a systematic researcher is not enough because of the environmental trouble. And, as for the effect about repair method to be applied to a currently underwater structure, it is not certainly proved. In this study The repair work of an underwater structure damaged applied the method that used a fiber panel form work. And a efficient of structure repaired was evaluated.

  • PDF

Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball

  • Shah, Mati Ullah;Usman, Muhammad;Kim, In-Ho;Dawood, Sania
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.655-669
    • /
    • 2022
  • Passive vibration control devices like tuned liquid column dampers (TLCD) not only significantly reduce buildings' vibrations but also can serve as a water storage facility. The recently introduced modified form of TLCD known as tuned liquid column ball damper (TLCBD) suppressed external vibration efficiently compared to traditional TLCD. For excellent performance, the mass ratio of TLCBD should be in the range of 5% to 7%, which does not include the mass of the ball. This additional mass of the ball increases the overall structure mass. Therefore, in this paper, an effort is made to reduce the mass of TLCBD. For this purpose, a new modified version of TLCBD known as tuned liquid column hollow ball damper (TLCHBD) is proposed. The existing mathematical modeling of TLCBD is used for this new damper by updating the numerical values of the mass and mass moment of the ball. Analytically the optimal design parameters are obtained. Numerically the TLCHBD is investigated with a single degree of freedom structure under harmonic and seismic loadings. It is found that TLCHBD performance is similar to TLCBD in both loadings' cases. To validate the numerical results, an experimental study is conducted. The mass of the ball of TLCHBD is reduced by 50% compared to the ball of TLCBD. Both the arrangements are studied with a multi-degree of freedom structure under harmonic and seismic loadings using a shake table. The results of the experimental study confirm the numerical findings. It is found that the performance behavior of both the dampers is almost similar under harmonic and seismic loadings. In short, the TLCHBD is lighter in weight than TLCBD but has a similar vibration suppression ability.

A study on the application of mill scale-derived magnetite particles for adsorptive removal of phosphate from wastewater (인제거용 흡착제로서 밀스케일로부터 선별된 마그네타이트 적용 연구)

  • Kim, Yunjung;Doliente, Jonica Ella;Choi, Younggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.281-287
    • /
    • 2017
  • Mill scale, an iron waste, was used to separate magnetite particles for the adsorption of phosphate from aqueous solution. Mill scale has a layered structure composed of wustite (FeO), magnetite ($Fe_3O_4$), and hematite ($Fe_2O_3$). Because magnetite shows the highest magnetic property among these iron oxides, it can be easily separated from the crushed mill scale particles. Several techniques were employed to characterize the separated particles. Mill scale-derived magnetite particles exhibited a strong uptake affinity to phosphate in a wide pH range of 3-7, with the maximum adsorptive removal of 100%, at the dosage of 1 g/L, pH 3-5. Langmuir isotherm model well described the equilibrium data, exhibiting maximum adsorption capacities for phosphate up to 4.95 and 8.79 mg/g at 298 and 308 K, respectively. From continuous operation of the packed-bed column reactor operated with different EBCT (empty bed contact time) and adsorbent particle size, the breakthrough of phosphate started after 8-22 days of operation. After regeneration of the column reactor with 0.1N NaOH solution, 95-98% of adsorbed phosphate could be detached from the column reactor.