• Title/Summary/Keyword: water chemical characteristics

Search Result 2,151, Processing Time 0.037 seconds

Comparison of Pollutant Load Discharge Characteristics with Fertilizer Treatments from Small Scale Plot (소규모 시험포에서의 비료처리별 오염배출 농도 특성 비교)

  • Lyou, Chang-Woun;Shin, Yong-Cheol;Heo, Sung-Gu;Han, Yun-Su;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.997-1001
    • /
    • 2006
  • Organic compost has been widely applied to the cropland because it has been thought as Environmentally Sound Agriculture (ESA) in Korea. In this study, two-year indoor rainfall experiments were performed. Surface runoff and groundwater volume from 10% and 20% slope plots were measured and water quality samples were collected and analyzed for BOD, COD, T-P and T-N. Flow weighted mean concentration (FWMC) values were computed to assess effects of various fertilizer treatments. FWMC BOD values for organic compost treated plots were higher than chemical fertilizer treated plots. FWMC BOD values for 20% slope plots were higher than those from those for 10% slope plots. The similar trends were found for COD and T-P. FWMC T-N values for chemical fertilizer treated plots were higher than organic compost treated plots. FWMC T-N values for 10% slope plots were higher than those for 20% slope plots. In Korea, excessive use of organic compost has caused extremely high levels of organic matter contents at the cropland. Since organic compost is very slow in releasing its nutrients to the soil, farmers usually apply excessive organic compost for immediate effects and maximum crop yields, which has been causing soil and water quality degradations. Therefore, thorough investigations for better nutrient management plans are needed to develop the ESA strategy in Korea.

  • PDF

Membrane Permeation Characteristics and Fouling Control through the Coating of Poly(vinyl alcohol) on PVDF Membrane Surface (PVDF막 표면에 폴리비닐알코올 코팅을 통한 분리막의 투과특성 및 막오염 제어)

  • Jang, Hanna;Kim, In-Chul;Lee, Yongtaek
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.276-284
    • /
    • 2014
  • In this study, a hydrophobic polyvinylidene fluoride (PVDF) membrane was modified by coating neutral hydrophilic poly(vinyl alcohol). The flux of pure water was measured and then fouling test was conducted with bovin serum albumin (BSA) as model protein foulant. As a result, the experiments showed that pure water flux was decreased but anti-fouling property was significantly enhanced. Pure water flux with increasing molecular weights of the polymer was decreased and fouling resistance was enhanced. Also, Pure water flux with increasing solution concentration was decreased and fouling resistance was enhanced. It is probably due to the increase in hydrophilicity and decrease in roughness of the membrane surface, as revealed by contact angle and AFM analysis.

Pervaporation Separation of Water-isopropanol Mixtures Through Modified Asymmetric Polyetherimide membranes: the Effect of NaOH Concentration for the Modification of Skin Layers on the Pervaporation Characteristics (개질 비대칭 폴리에테르이미드막을 통한 물-이소프로판올 혼합물의 투과증발 분리: 투과증발 특성에 미치는 표면층 개질에 사용된 NaOH 농도의 영향)

  • Kim, Sang-Gyun;Jegal, Jonggeon;Lee, Kew-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.319-323
    • /
    • 1999
  • Asymmetric polyetherimide membranes were prepared by phase inversion method. In the modification of the skin layers of polyetherimide membranes, the effects of NaOH concentration on the morphology and pervaporation separation of water-isopropanol mixtures were investigated. With increasing concentration of NaOH solution, polyamicacid structure was formed by the hydrolysis of imide group of polyetherimide, and the thickness of dense layer of the asymmetric membrane increased. In the pervaporation separation of water-isopropanol mixtures the overall permeation rate decreased and the separation factor increased with increasing concentration of NaOH solution. However, when the concentration of NaOH solution was very high, the permeation rate increased but separation factor decreased. From these results, it was found that the permeation behaviors of asymmetric polyetherimide membranes depended upon the concentration of NaOH solution. These modified membranes showed that both the permeation rate and separation factor increased as the operating temperature increased.

  • PDF

An Evaluation of a super-absorbent polymer as the Nucleating Agent for a Capsule-type Ice Storage System (고흡수성고분자가 조핵제로 첨가된 빙축열용 축열재 개발)

  • Choi, Hyung-Joon;Hong, Seong-Ahn;Park, Won-Hoon
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.28-37
    • /
    • 1990
  • A study was conducted to investigate the feasibility of using a super-absorbent polymer made from a acrylic acid copolymer for a capsule-type ice storage system. In a simple pyrex-tube test, 25% of distilled water samples tested turned out not be frozen at all at $-12^{\circ}C$ and the average supercooling of the samples frozen was $9.8^{\circ}C$. With the addition of 0.5wt% super-absorbent polymer, however, the supercooling of the distilled water was dramatically reduced and more than 35% of samples tested did not show any supercooling. The heat transfer characteristics of a capsule-type ice storage unit was also investigated with a distilled water as the phase-change material. With the addition of 0.5wt% polymer, the supercooling of water was not observed at all and thus an overall heat transfer was enhanced. Based on these results, it was concluded that a super-absorbent polymer is a potential candidate as the nucleating agent for an ice-storage system.

  • PDF

Synthesis and Characteristics of Cationic Polyurethane-Acrylates as a Retention Aid (양이온성 폴리우레탄-아크릴레이트계 보류향상제의 합성 및 특성)

  • Han, Chul;Kim, Doo-Won;Yoon, Doo-Soo;Kim, Sun;Hong, Wan-Hae;Kim, Jung-Gyu
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.209-216
    • /
    • 2004
  • Two types of polyurethane-acrylate polymer were synthesized by reaction of 2-hydroxyethyl methacrylate(HEMA), acrylamide(AA), and polyurethane prepolymer. Water-soluble cationic polyurethane/acrylate retention aids were prepared by using polyurethane-acrylate, benzyl chloride and distilled water. The retention, drainage and strength properties of the retention aids were investigated. The retention of cationic polyurethane/acrylate type retention aids maintained around 70 % regardless of nm. COD value of white water was much reduced by adding the retention aids to it. Drainage property was also improved by addition of the retention aids. In addition, specific compression strength of the paper was improved a little by addition of the retention aids. PU-HEMA type showed better performance than PU-AA in terms of compression strength of the paper.

Characterization and performance of post treated PVDF hollow fiber membrane

  • Eman S. Sayed;Hayam F. Shaalan;Magda I. Marzouk;Heba A. Hani
    • Membrane and Water Treatment
    • /
    • v.15 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • Modification of Polyvinylidene fluoride (PVDF) hollow fiber membranes (HFMs) characteristics and performance were investigated via post treatment using different oxidants. sodium hypochlorite (NaOCl), hydrogen peroxide (H2O2) and potassium persulfate (KPS). Fourier transform infrared (FTIR) and Proton nuclear magnetic resonance (1H-NMR) results revealed no structural differences after post treatment. Cross-sectional micrographs show finger-like structures at the outer and inner walls of the HFMs and sponge-like structures in middle, where NaOCl and KPS post treated fibers exhibited a decrease in finger-like structures in addition to aggregates appearing on the surface, consequently leading to an increase in the surface roughness (Ra) from 48 nm to 52.8nm and 56 nm, respectively. Hydrogen peroxide post treatment only was observed to decrease the water contact angle from 98° to 81.4°. It was also observed that the elongation at break and the modulus deceased after NaOCl post treatment from 34.5 to 28.5% and from 19.3 Mpa to 16.6 Mpa, respectively. Moreover, pure water flux after H2O2 post treatment increased from 87.8 LMH/bar to 113 LMH/bar at 0.45 bar, while no changes were detected for the methylene blue dye rejection (74%) between raw and hydrogen peroxide post treated fibers at the same pressure. According to the findings hydrogen peroxide post treated PVDF HFMs have the most uniform surfaces, with almost no alterations in structural and mechanical properties or porosities with enhanced hydrophilicity and pure water flux maintaining appropriate rejection. Therefore, it is considered an efficient surface modifying agent for UF/NF membranes or low-pressure separators.

An Experimental Study of Retting Conditions of Domestic Ramie Fiber (국산 모시섬유의 침지조건에 관한 실험적 연구)

  • 이전숙;최경은
    • Korean Journal of Human Ecology
    • /
    • v.6 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • We investigated the bacterial and chemical retting conditions of ramie grown in Hansan. Bacterial retting was done in troughs at a temperature of 30${\pm}$2$^{\circ}C$ for 1, 2, 3, 4, 5, 6 and 10 days. Chemical retting(CR) was done at the different conditions using sodium silicate (Na$_2$SiO$_3$), sodium carbonate(Na$_2$CO$_3$) and sodium hydroxide(NaOH) as alkali solutions. The retting solution was boiled during 1. 2, 4 and 6 hours respectively at the different concentration(0.5, 2.0, 4.0, 6.0. 8.0 %) with decorticated ramie stems submerged in it. The treated ramie was then rinsing with running tap water thoroughly, which was further soaker in 0.5% acetic acid (v/v) solution for three minutes and washed thoroughly with distilled water. Finally ramie was dried for 2 hours in vacuum oven at 100 $^{\circ}C$. To know change of ramie fiber characteristics retted at the different conditions, weight loss, fiber bundle strength were tested and color, texture, luster etc. were also sensually evaluated. The results were as follows. $.$ Weight loss of ramie retted in each alkali solutions were about 10%, 20% and 30% in sodium silicate, sodium carbonate and sodium hydroxide, respectively. $.$ Chemical retting was faster than bacterial retting, but the color of chemically retted ramies were worse than that of bacterially retted ramies. $.$ The combination of bacterial and chemical processing showed some merits. A combination of either 2 or 3 days of bacterial and then chemical retting might provide the best quality ramie. $.$ Ramie fiber became cottonized ramie when retted in 8% NaOH solution for 6-8hours.

  • PDF

대전광역시 지하수의 수리화학 특성 및 오염에 대한 토지이용 형태 및 도시화의 영향

  • 정찬호;김은지
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.35-37
    • /
    • 2001
  • This study has investigated the chemical characteristics and the contamination of groundwater in relation to land use in Daejeon Metropolitan City. An attempt was made to distinguish anthrophogenic inputs from the influence of natural chemical weathering on the chemical composition of groundwater at Taejon. Groundwater samples collected at 170 locations in the Taejon area show very variable chemical composition of groundwater, e.9. electrical conductance ranges from 65 to 1,290 S/cm. Most groundwater is weakly acidic and the groundwater chemistry is more influenced by land use and urbanization than by aquifer rock type. Most of groundwater from green areas and new town residential districts has low electrical conductance, and is of Ca-HC $O_3$ type, whereas the chemical composition of groundwater from the old downtown and industrial district is shifted towards a Ca-Cl (N $O_3$+S $O_4$) type with high electrical conductance. A number of groundwater samples in the urbanized area are contaminated by high nitrate and chlorine, and exhibit high hardness. The Ep$CO_2$, that is the $CO_2$ content of a water sample relative to pure water, was computed to obtain more insight into the origin of $CO_2$ and bicarbonate in the groundwater. Factor analysis of the chemical data shows that the HC $O_3$ and N $O_3$ concentrations have the highest factor loadings on factor 1 and factor 2, respectively. Factors 1 and 2 represent major contributions from natural processes and human activities, respectively. The results of the factor analysis indicate that the levels of $Ca^{2+}$, $Mg^{2+}$, N $a^{+}$, Cl and SO4$^2$ derive from both pollution sources and natural weathering reactions.ons.

  • PDF

Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination

  • Kim, In Sik;Ko, Dae Young;Canlier, Ali;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.361-369
    • /
    • 2018
  • A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, $8.7{\Omega}.cm^2$ of electrical resistance, $40kgf/cm^2$ of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.

Evaluation of Flow Characteristics within In-Line Mixer for Water Treatment using CFD Technique (CFD모사 기법을 이용한 관내 혼화장치내 흐름 특성 평가)

  • Park, Dae-Jin;Park, Young-Oh;Park, No-Suk;Kim, Seong-Su;Wang, Chang-Kuen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.351-358
    • /
    • 2008
  • The modified in-line mixer which was suggested in this study for small water treatment facilities was evaluated on the performance of coagulation. For the objectives of this research, computational fluid dynamics(CFD) simulation was applied for analysis of flow characteristics within the modified in-line mixer. For verifying the results of CFD simulation, wet tests for the pilot plant were conducted. The wet test was to measure the actual coagulant dispersion distribution on the overall cross-section at a distance of 5.5D from the chemical injection point. From the results of CFD simulation and wet test, it was shown that the coagulant dispersion within the modified in-line mixer was occurred more uniformly than within the existing PDM(Pump diffusion Mixer). The results have confirmed the modified in-line mixer had several advantages compared with the existing PDM in terms of dispersion efficiency.