• Title/Summary/Keyword: water chemical characteristics

Search Result 2,151, Processing Time 0.046 seconds

Effect of Fluoridated 10% Carbamide Peroxide on Enamel Surface Change and Whitening (불소를 첨가한 10% Carbamide Peroxide의 법랑질표면 변화와 미백효과)

  • Lee, Hye-Jin;Kim, Hyun-Dae;Kim, Min-Young;Kwon, Tae-Yub;Kim, Kyo-Han
    • Journal of dental hygiene science
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • The purposes of this study were to examine the effect of different fluoridated bleaching solution on the changes in physical and chemical characteristics of tooth. Forty-eight bovine incisors were divided into four groups to receive bleaching treatments, over a 14days period, as follows: no treatment; 10% carbamide peroxide (CP) bleaching; 10% CP containing 0.05% fluoride; and 10% CP containing 0.1% fluoride. All the specimens were highly polished and discolored with commercial COCK.Color and enamel changes were determined with colorimeter, microhardness tester, scanning electron microscope, atomic force microscopy. All the collected data were analyzed with one-way ANOVA. After the bleaching, bleached groups showed the color change(E*). Microhardness of 10% CP group decreased after tooth bleaching. But microhardness of containing fluoride bleached groups increased after tooth bleaching. Enamel surface of 10% CP bleached group showed any apparent morphology and roughness changes compared to the enamel which was stored in distilled water only. These results demonstrated that Fluoridated 10% Carbamide Peroxide have appreciable bleaching effect on bovine teeth and were not adversely affects enamel. Supporting influence of fluoride-containing bleaching solution on remineralization could be observed and further research must be carried out in various active environments to confirm these results clinically.

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.

Identification of NMR Data for ginsenoside Rg1 (Ginsenoside Rg1의 NMR 데이터 동정)

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Park, Hee-Jeong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.291-299
    • /
    • 2008
  • The fresh ginseng roots were extracted in aqueous methanol (MeOH), and the obtained extracts were partitioned using ethyl acetate (EtOA), n-butanol (n-BuOH), and water, successively. The repeated silica gel column chromatography for n-BuOH fraction afforded a purified ginsenoside $Rg_1$. The physico-chemical, spectroscopic and chromatographic data of ginsenoside $Rg_1$, such as crystallization characteristics, melting point, specific rotation, infrared spectrometry (IR) data, fast atom bombardment/mass spectrometry (FAB/MS) data, nuclear magnetic resonance (NMR) data, retention factor (Rf) in thin layer chromatography (TLC) experiment, and retention time (r.t.) in HPLC analysis, were measured and compared with those reported in literatures. Especially, the previous literatures reported different data for ginsenoside $Rg_1$ in the $^{1}H-$ and $^{13}C$-NMR experiments. This paper gives the exactly assigned NMR data through 2D-NMR experiments, such as $^{1}H-^{1}H$ correlation spectroscopy (COSY), hetero nuclear single quantum correlation (HSQC), and hetero nuclear multiple bond connectivity (HMBC).

Synthesis of Electroactive PAAc/PVA/PEG Hydrogel Soft Actuator by Radiation Processing and Their Dynamic Characteristics (방사선을 이용한 전기 활성 PAAc/PVA/PEG 하이드로겔 소프트 액추에이터의 제조 및 구동 특성 분석)

  • Shin, Yerin;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.698-706
    • /
    • 2019
  • Over the last few decades, there have been a lot of efforts to develop soft actuators, which can be external stimuli-responsive and applied to the human body. In order to fabricate medical soft actuators with a dynamic precision control, the 3D crosslinked poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels were synthesized in this study by using a radiation technique without noxious chemical additives or initiators. After irradiation, all hydrogels showed high gel fraction over 75% and the ATR-FTIR spectra indicated that PAAc/PVA/PEG hydrogels were successfully synthesized. In addition, the gel fraction, equilibrium water content, and compressive strength were measured to determine the change in physical properties of PAAc/PVA/PEG hydrogels according to the irradiation dose and content ratio of constituents. As the irradiation dose and amount of poly(ethylene glycol) diacrylate (PEGDA) increased, the PAAc/PVA/PEG hydrogels showed a high crosslinking density and mechanical strength. It was also confirmed that PAAc/PVA/PEG hydrogels responded to electrical stimulation even at a low voltage of 3 V. The bending behavior of hydrogels under an electric field can be controlled by changing the crosslinking density, ionic group content, applied voltage, and ionic strength of swelling solution.

Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier (2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구)

  • Seo, Dong-Kyun;Lee, Sun-Ki;Song, Soon-Ho;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

Environmental Survey on the Cultivation Ground in the West Coast of Korea 5. Bottom Conditions on a Coastal Farm of Kunsan Areas (서해연안의 양식장 환경조사 5. 군산연안 양식장의 저질환경)

  • Lee Jeong-Yeol;Ryou Dong-Ki
    • Journal of Aquaculture
    • /
    • v.8 no.2
    • /
    • pp.85-98
    • /
    • 1995
  • In Kunsan coastal areas, there are some plans to construct industrial zone and, it will affect physical and chemical parameters of marine environment of the area. As one of many environmental surveys on the aquacultural farm in Korean west coast, the survey on the bottom sediment characteristics of intertidal farm was conducted from May 1992 to April 1993. Dominant grain size was fine sand $(69-98\%)$ and the pH of sediment was ranged of $7.2\~9.1$. Especially the pH increased after embank was constructed. The water holding capacity was $11.1-28.1\%$ and showed high value in silt and clay area. The COD was 1.27 mg/g dry mud and increased after embank was constructed. The total organic matter content ranged of $0.84-8.11\%$ and the DO absorption was $0\~6.56 mg/g$ dry mud. The value of DO absorption showed low in winter and spring, but high in summer and fall. The total nitrogen and the sulfide were rang of $0\~402{\mu}g/g$ dry mud and $0\~122{\mu}g/g$ dry mud respectively. These values were high in summer and winter season, and higher in upper layer than that of lower layer in general.

  • PDF

A numerical study on heat transfer and pressure drop of plate heat exchanger using at seawater air conditioning with the variation of channel spaces (채널 간격 변화에 따른 해수냉난방용 판형 열교환기의 열전달과 압력강하에 대한 수치해석적 연구)

  • Kim, Hyeon-Ju;Lee, Ho-Saeng;Yoon, Jung-In;Son, Chang-Hyo;Jung, Young-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.704-709
    • /
    • 2014
  • Plate heat exchanger is being applied in the field of marine plants and chemical industry, such as OTEC and SWAC equipment. The study aims to interpret the heat transfer and pressure drop characteristics of plate heat exchangers to determine the geometric design parameters such as the channel space. In this study, heat transfer performance was numerically studied with respect to the variation of channel spaces. The results from numerical analysis indicated that the j factor was linearly decreased with the flowrate of seawater over every cases. As the flowrate of water increased with respect to channel spaces, the j factor decreased linearly. And the f factor decreased linearly with the increase of flowrate. When the channel space is 2.8~3.2 mm and 3.2~3.2 mm, respectively, the area goodness factor of plate heat exchanger showed the highest performance.

A comprehensive review of microplastics: Sources, pathways, and implications (미세 플라스틱의 종합적 고찰: 근원, 경로 및 시사점)

  • Yano, K.A.V.;Reyes, N.J.D.G.;Geronimo, F.K.F.;Jeon, M.S.;Kim, Y.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.153-160
    • /
    • 2020
  • Most studies defined microplastic (MP) as plastic particles less than 5 mm. The ubiquity of MP is raising awareness due to its potential risk to humans and the environment. MP can cause harmful effects to humans and living organisms. This paper review aimed to provide a better understanding of the sources, pathways, and impacts of MP in the environment. MP can be classified as primary and secondary in nature. Moreover, microplastic can also be classified as based on its physical and chemical characteristics. Stormwater and wastewater are important pathways of introducing MP in large water bodies. As compared to stormwater, the concentrations of MP in wastewater were relatively lower since wastewater treatment processes can contribute to the removal of MP. In terms of polymer distribution, wastewater contains a wider array of polymer varieties than stormwater runoff. The most common types of polymer found in wastewater and stormwater runoff were polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyethylene (PE) and polyethylene terephthalate (PET). The continuous discharge and the increasing number of MP in the environment can pose greater hazards and harmful effects on humans and other living organisms. Despite the growing number of publications in relation to MP, further studies are needed to define concrete regulations and management strategies for mitigating the detrimental effects of MP in the environment.

Preliminary Study on the Formation Environment of Serpentinite occurring in Ulsan Area (울산지역 사문암의 형성환경 해석을 위한 예비연구)

  • Koh, Sang-Mo;Park, Choong-Ku;Soh, Won-Ju
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.325-336
    • /
    • 2006
  • Domestic serpentinite is one of the important industrial minerals utilizing in the iron manufacturing company such as POSCO in Korea. Serpentinite is distributed in the Ulsan Fe deposit, Andong, Hongseong-Cheongyang, and Gapyeong areas. This study tries to interpret the relationship among the formation of carbonate rocks, iron mineralization, and serpentinite alteration throughout the study of field occurrence, mineralogy, and chemical compositions. Serpentine is formed by the break-down of olivine and pyroxene of parent peridotite. The serpentinization is inferred to be formed by the hydrothermal fluid derived from intruded Cretaceous granite and the addition of meteoric water. Variation of major oxides such as $SiO_2,\;Fe_2O_3$, and MgO in serpentinized rocks are controlled by the degree of serpentinization and Fe mineralization. Variation of $Al_2O_3$ and CaO contents of altered rocks is dependent on the amount of the residual minerals such as calcite and homblende, and on the degree of chloritization. The presence of carbonate rocks reported in the sedimentary origin or igneous origin (carbonatite) provided a geological environment to form skarn type Fe deposit regardless of its origin. The geological processes of Ulsan Fe deposits are inferred to be formed as the order of the formation of carbonate rocks ${\to}$ the intrusion of Cretaceous granite ${\to}$ serpentinization ${\to}$ Fe mineralization by the interprelation of field occurrence and mineralogical characteristics.

Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea (변산반도 조간대 표층 퇴적물의 퇴적률 및 저서환경 변화)

  • Jung, Rae-Hong;Hwang, Dong-Woon;Kim, Young-Gil;Koh, Byoung-Seol;Song, Jae-Hee;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • To understand temporal variations in geochemical characteristics of intertidal surface sediments around Byeonsan Peninsula (in the middle of the western coast, Korea) after the construction of Saemanguem dyke, the sedimentation rate and various geochemical parameters, including mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulfide (AVS), were measured along four transects (A.D lines) at monthly intervals from February 2008 to March 2009. The average monthly sedimentation rate ranged from -5.3 to 3.8 mm/month (mean $-0.8{\pm}2.7\;mm$/month), which showed an erosion-dominated environment in the lower part of the intertidal zone. In addition, surface sediments were eroded in summer and autumn, but were deposited in spring and winter. The Mz of surface sediments ranged from -0.8 to $3.4{\varnothing}$ (mean $2.8{\pm}0.5{\varnothing}$), indicating that the surface sediments consist of coarser sediments (sand and slightly gravelly sand). The Mz of surface sediments did not show large monthly and/or seasonal variations, although the sedimentation rates of surface sediment showed large seasonal variation. This may be due to lateral shifting and effective dispersion of surface sediments by wind, tide, and longshore current. The concentrations of IL and COD in the surface sediments ranged from 0.2 to 2.9% (mean $1.4{\pm}0.4%$) and from 0.2 to $18.5\;mgO_2$/g-dry (mean $3.9{\pm}3.4\;mgO_2$/g-dry), respectively, which were slightly higher in spring than in the other seasons. This may be related to spring blooms of phytoplankton in seawater and/or benthic microalgae in surface sediments. On the other hand, no AVS concentrations were detected in surface sediments at any of the sampling stations during the study period.