• Title/Summary/Keyword: water cement ratio

Search Result 1,133, Processing Time 0.038 seconds

An Experimental Research on the Feature of the Porous Concrete (다공콘크리트의 특성에 관한 실험적 연구)

  • 옥치율;김종주;옥치남
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.71-80
    • /
    • 1990
  • We experimented the physical property of the porous concrete by changing the water cement ratio, when the aggregate ratios are 1:5 and 1:7 separately. And then we received the results as follows. The bigger, the coarse grading of the porous concrete is, the more sensitive to the water cement ratio, the porous concrete becomes. And if we think over its compressive strength, the coarse aggregate which has 5-15mm width is most appropriate. So we concluded that when its compressive strength, permeability coefficient and its unit weight are $50kg/cm^{2}3cm/sec$ and $1900kg/m^{3}$ respectively, the water cement ratio which has 35-37% width is most appropriate, too. And its compressive strength and unit weight show that they are about a quarter and three quarters respectively about the conventional concrete.

  • PDF

An Experimental Study on the Mix Properties of Concrete Pavement Incorporating Fly-Ash (플라이애쉬를 혼입한 콘크리트포장의 배합특성에 관한 실험적 연구)

  • Lee, Joo-Hyung;Choi, Seong-Yung;Yun, Kyong-Ku;Jung, Young-Hwa
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.313-322
    • /
    • 1997
  • As the weight of trucks increases, the need for concrete pavement also increases. Therefore, the addition of fly-ash may improve the properties of pavement concrete as well as recycle fly-ash. A full factorial experiment was performed using the primary variables, such as water-cement ratio, fly-ash substitution ratio, and maximum size of coarse aggregate, as a preliminary study for optimum mixture design for pavement concrete. The results of preliminary study indicates that the addition of fly-ash is the most important factor determining concrete strength, followed by the maximum size of coarse aggregate and water-cement ratio. It, also, shows the relative importance of fly-ash substitution ratio, compared to the water-cement ratio, and the interaction effects between the primary variables. Optimum mixture designs for pavement concrete incorporating fly-ash, that satisfied the target responses, were proposed in terms of fly-ash substitution ratio, water cement ratio and maximum size of coarse aggregate.

  • PDF

Properties of Cemet Mortar with PVA and MC (폴리머 첨가량에 따른 모르터의 특성의 변화)

  • 이명규;윤건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.323-326
    • /
    • 1999
  • The purpose of this study is to examine the properties of cement mortar with PVA(Poy Vinyl Alcohol) and MC(Methyl Cellulos). In this paper, Water-soluble polymer cement motar using PVA and MC with water-cement ratio of 50%, polymer-cement ratio of 1.0%, 0.8% and a ratio of cement to fine aggregate (size: #5, #7) 2:3 are prepared, and tested for compressive strength, shear bond strength, flow test, penetration and dry-shirinkage.

  • PDF

Experimental Investigation of Chloride Ion Penetration and Reinforcement Corrosion in Reinforced Concrete Member

  • Al Mamun, Md. Abdullah;Islam, Md. Shafiqul
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • This paper represents the experimental investigation of chloride penetration into plain concretes and reinforced concretes. The main objective of this work is to study the main influencing parameters affecting corrosion of steel in concrete. Plain cement concrete and reinforced cement concrete with different water-cement ratios and different cover depth were subjected to ponding test. Ponding of specimens were done for different periods into 10% NaCl solution. Depth of penetration of chloride solution into specimens was measured after ponding. Specimens were crushed and reinforcements were washed using $HNO_3$ solution and weight loss due to corrosion was calculated accordingly. There was a linear relationship between depth of penetration and water-cement ratio. It was also observed that, corrosion of reinforcing steel increases with chloride ponding period and with water-cement ratio. Corrosion of steel in concrete can be minimized by providing good quality concrete and sufficient concrete cover over the reinforcing bars. Water-cement ratio has to be low enough to slow down the penetration of chloride salts into concrete.

Properties of Mortar Admixed with Waterproofer Recycled Cement-Sludge (시멘트슬러지를 재활용한 시멘트 혼합용 방수제의 모르타르 방수특성)

  • 노재성;조헌영;이기준;이재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.37-43
    • /
    • 1992
  • Properties of the mortar and the remitar admixed with waterproofer(CS) which was made from cement-sludge were compared with those of the other waterproofers (DA, DD and DH). 1. The CS waterproofer appeared to have a good waterproofness(compressive strength-79%, water absorption ratio-60%, waterpermeability ratio-70%)in cement mortar. 2. The CS waterproofer appeared to have an excellent watertightness(compressive strength-125% water absorption ratio-45%, water permeability ratio-60%) in remitar.

  • PDF

Properties of the high strength and self-compacting concrete according to the replacement ratio of fly ash (플라이애쉬의 치환율에 따른 고강도 자기충전 콘크리트의 특성)

  • Kwon, Yeong-Ho;Lee, Hyun-Ho;Lee, Hwa-Jin;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.85-88
    • /
    • 2006
  • This study describes the optimum mix proportion of the high strength and self-compacting concrete placed in main structures of LNG above tank. This concrete requires high strength level about $60{\sim}80MPa$, low hydration heat, balance between workability and consistency without vibrating in the actual work. For this purpose, low heat portland cement and fly ash are selected and design factors including water-binder ratio, replacement ratio of fly ash are tested. As experimental results, low heat portland cement shows lower the confined water ratio than another cement type and the optimum replacement ratio of fly ash in order to improve properties of the binder-paste shows 10% by cement weight considering test results of the confined water ratio$({\beta}p)$. Also, flowability of the high strength and self-compacting concrete by using fly ash about $10{\sim}20%$ is improved. The replacement ratio of fly ash 10% and water-binder ratio $25{\sim}27%$ are suitable to the design strength 80MPa and cost, In case of the design strength 60MPa, the replacement ratio of fly ash and water-binder ratio show 20% and $25{\sim}30%$ separately. Based on the results of this study, the optimum mix proportions of the high strength and self-compacting concrete will be applied to the construction of LNG above tank as a new type.

  • PDF

Effect of Mix Proportions on the Permeability and Mechanical Properties of Polymer Cement Concrete (폴리머 시멘트 콘크리트의 배합조건이 투수성능과 역학적 성질에 미치는 영향)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.356-361
    • /
    • 1998
  • Permeable polymer cement concrete in this study is one of the invironment conscious concretes that can be applied at roads, side walks, parking lots, interlocking block and river embankment, etc. In this study, permeable polymer cement concretes using polymer dispersion(St/Ac) with water-cement ratios of 25, 30, 35 and 40%, polymer-cement ratios of 0, 5, 10, 15 and 20%, and a ratio of cement to aggregate (by weight), 1 : 3.5(about 415kg/㎥), 1 : 4.0(about 375 kg/㎥), and 1 : 4.5(about 345kg/㎥) are prepared, and tested for compressive, flexural and tensile strength, and permeability. From the test results, increase in the strengths of permeable polymer cement concrete are clearly observed with increasing polymer-cement ratio, we can obtain the maximum strengths at water-cement ratio of 35%. The optimum permeable polymer cement concrete according to application and location of work can be selected in various mix proportions.

  • PDF

Bond Strength Characteristics Between Aggregate and Mortar (골재-모르타르 경계면의 부착강도 특성)

  • 박연동;양주경;임희철;김진근;장정수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.129-134
    • /
    • 1991
  • The effects of water-cement ratio, age, and admixture such as fly ash, silica fume on the bond strength between aggregate and mortar were investigated. As the result, with increasing of water-cement ratio, the bond strength was slightly decreased while the compressive strengths of mortar and concrete were seriously decreased. The rate of strength gain of bond strength was not decreased with increasing of water-cement ratio while that of compressive strength was gradually decreased.

  • PDF

An Experimental Study for Crack Prevention of Floor Mortar (바닥용 모르타르의 균열방지를 위한 실험적 연구)

  • 정재동;김진근;최응규;이칠성;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.202-207
    • /
    • 1996
  • Recently, the mortar crack on floor is very serious in construction field, e.g. the crack due to plastic shrinkage and the crack due to drying shrinkage. To prevent this kind of crack, optimum mix propertions not only satisfying the required workability but also minimizing the unit water content were selected. And the expansion admixtures were used to compensate the shrinkage of mortar. This study shows that water/cement ratio used in construction field is about 64%. Even if we reduce water/cement ratio of mortar by the appropriate use the fine aggregate with high fineness modulus and superplastizer, floor mortar can have the required workability. The equations between mortar flow and water/cement ratio, sand/cement ratio, fineness modulus of fine aggregate were proposed in this study. And this equation may provide available mix proportions of floor mortar.

  • PDF

A Strength Properties According to Water cement ratio using Oyster shell as Aggregate (굴 패각을 잔골재로 사용한 모르타르의 물시멘트비에 따른 강도특성)

  • Jung, Ui-In;Choi, In-Kwon;Heo, Min-Hoe;Kim, Bong-Joo;Won, Chul-Hee;Choi, Ho-Rim
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.154-155
    • /
    • 2016
  • Oyster shell is light weighted and its strength characteristic is similar to sand. So we produced mortar test piece using grounded oyster shell powder under 0.5mm, which is a standard of fine aggregate, and reviewed strength properties according to water cement ratio. In our test, we used two kinds of oyster shell particles: below 0.6mm and 1.2~2.5mm. Water cement ratio is varied 40% to 100% and we found that flexural strength and compressive strength are decreased in higher water cement ratio.

  • PDF