• 제목/요약/키워드: water and wastewater treatment

검색결과 2,053건 처리시간 0.026초

산업단지 폐수발생량 원단위 산정 비교연구 (Comparison of the unit mass discharge from wastewater treatment facility in the industrial park with the estimation methods)

  • 김준엽;최경식
    • 상하수도학회지
    • /
    • 제28권3호
    • /
    • pp.339-344
    • /
    • 2014
  • The predictive capacity of wastewater treatment facility in the industrial park was estimated by the traditional method and on-the-spot survey such as certification of wastewater report and the invoices of water supply and ground water supply. The ratios of a converted wastewater to supplied industrial water between traditional method and on-the-spot survey in the estimation methods were different. By using traditional method, the business type of clothes, accessary and fur production had 77.18 % of waste ratio of wastewater and $10.72m^3/day{\cdot}1000m^2$ unit mass of wastewater as the highest among 9 business types. With the respect to the on-the-spot survey, food manufacturing business type had 75 % of waste ratio of wastewater and $8.35m^3/day{\cdot}1000m^2$ unit mass of wastewater as the highest values. The amount of wastewater from on-the-spot survey method was 541 $m^3/day$ less than one from traditional method.

Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment

  • Alighardashi, Abolghasem;Pakan, Mahyar;Jamshidi, Shervin;Shariati, Farshid Pajoum
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.517-528
    • /
    • 2017
  • This study evaluates the performance of membrane bioreactor (MBR) coupled with a modified walnut shell granular activated carbon (WSGAC) for tannery wastewater treatment. For this purpose, a pilot with overall volume of 80L and 12 hours hydraulic retention time (HRT) is operated in three scenarios. Here, the chemical oxidation demand (COD) of wastewater is reduced more than 98% in both C:N ratios of 13 (S1) and 6.5 (S2). This performance also remains intact when alkalinity depletes and pH reduces below 6 (S3). The ammonium removal ranges between 99% (S2) and 70% (S3). The reliability of system in different operating conditions is due to high solids retention time and larger flocs formation in MBR. The average breakthrough periods of WSGAC are determined between 15 minutes (S2) and 25 minutes (S1). In this period, the overall nitrate removal of MBR-WSGAC exceeds 95%. It is also realized that adding no chemicals for alkalinity stabilization and consequently pH reduction of MBR effluent (S3) can slightly lengthen the breakthrough from 15 to 20 minutes. Consequently, MBR can successfully remove the organic content of tannery wastewater even in adverse operational conditions and provide proper influent for WSGAC.

축산폐수 생물학적 처리수의 후처리를 위한 물리·화학적 단위 공정 비교 (Comparisons of Physical and Chemical Methods for Dealing with Biologically Pre-Treated Livestock Wastewater as a Post-Treatment)

  • 최용수;홍석원;권기한;정일호
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.110-119
    • /
    • 2004
  • The combination of biological and physical/chemical technologies is a promising technique to reduce highly concentrated pollutants in livestock wastewater. It is suggested to treat livestock wastewater efficiently as follows: firstly, biodegradable organic matters, nitrogen and some of phosphorus should be removed by a biological treatment process and then residual non-biodegradable organic matters, color and phosphorus be eliminated by physicochemical technologies. In this study, therefore, the integrations of chemical coagulation, activated carbon adsorption, Fenton oxidation and ozonation were evaluated to provide appropriate post-treatment processes for biologically pre-treated livestock wastewater. After chemical coagulation followed by ozonation or Fenton oxidation process, the quality of treated wastewater could meet the discharge limit in Korea. However, a yellowish brown color still remained in the treated wastewater after a single method such as coagulation and Fenton oxidation was applied. The ozonation was found to be the most effective technology for the decolorization. Neither simple biological nor physicochemical treatment provides adequate decolorization and sufficient depletion of organics in livestock wastewater so far. Consequently, the integration of Fenton oxidation and ozonation with a biological treatment process is recommended to treat livestock wastewater in terms of removal efficiency.

하수처리시설의 자연 재해 영향 정량화 지수 개발 연구 (Development of a disaster index for quantifying damages to wastewater treatment systems by natural disasters)

  • 박정수;박재형;최준석;허태영
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.53-61
    • /
    • 2021
  • The quantified analysis of damages to wastewater treatment plants by natural disasters is essential to maintain the stability of wastewater treatment systems. However, studies on the quantified analysis of natural disaster effects on wastewater treatment systems are very rare. In this study, a total disaster index (DI) was developed to quantify the various damages to wastewater treatment systems from natural disasters using two statistical methods (i.e., AHP: analytic hierarchy process and PCA: principal component analysis). Typhoons, heavy rain, and earthquakes are considered as three major natural disasters for the development of the DI. A total of 15 input variables from public open-source data (e.g., statistical yearbook of wastewater treatment system, meteorological data and financial status in local governments) were used for the development of a DI for 199 wastewater treatment plants in Korea. The total DI was calculated from the weighted sum of the disaster indices of the three natural disasters (i.e., TI for typhoon, RI for heavy rain, and EI for earthquake). The three disaster indices of each natural disaster were determined from four components, such as possibility of occurrence and expected damages. The relative weights of the four components to calculate the disaster indices (TI, RI and EI) for each of the three natural disasters were also determined from AHP. PCA was used to determine the relative weights of the input variables to calculate the four components. The relative weights of TI, RI and EI to calculate total DI were determined as 0.547, 0.306, and 0.147 respectively.

농촌 지역에서 유입 유량이 소규모 하수처리장 처리 효율에 미치는 영향 (Effect of sewage flow on treatment efficiency of small scale wastewater treatment plant in rural community)

  • 임지열;길경익
    • 한국습지학회지
    • /
    • 제18권3호
    • /
    • pp.267-274
    • /
    • 2016
  • 농촌 지역 하수도 보급은 하천, 호소 및 습지와 같은 수계 수질 보호를 위해서 반드시 필요하다. 또한 안정적인 소규모 하수처리장 운영을 위해서는 유입 유량과 농도의 변화가 큰 소규모 하수도 특성을 고려해야 한다. 본 연구에서는 봉화군 18개의 소규모 하수처리장 운전 결과를 통해 유입유량비 (유입 유량 / 설계 유량) 특성, 소규모 하수처리장 처리 효율에 미치는 영향과 적정 유입유량비 산정에 관한 연구를 수행하였다. 분석 결과 유입유량비는 여름철에 가장 높은 것으로 나타난 반면, 유입 하수 농도는 가을철과 겨울철에 높은 것으로 나타났다. 유입유량비가 증가할수록 처리 효율이 증가하는 경향을 보였으며, 영양염류 처리 효율이 유기물과 부유물질 처리 효율에 비해 민감한 영향을 받는 것으로 나타났다. 안정적인 소규모 하수처리장 처리 효율을 위해서는 유입유량비 0.8 이상을 유지해야 할 것으로 판단된다.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.