• Title/Summary/Keyword: water addition

Search Result 9,496, Processing Time 0.033 seconds

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

Design of Advanced Weathering Steel with High Corrosion Resistance for Structural Applications

  • Choi, B.K.;Jung, H.G.;Yoo, J.Y.;Kim, K.Y.
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.121-129
    • /
    • 2005
  • Basic design concept of the future steel structure requires environmental compatibility and maintenance free capability to minimize economic burdens. Recent trends in alloy design for advanced weathering steel include addition of various alloying elements which can enhance formation of stable and protective rust layer even in polluted urban and/or high $Cl^{-}$ environment. The effects of Ca, Ni, W, and Mo addition on the corrosion property of Ca-modified weathering steel were evaluated through a series of electrochemical tests (pH measurement and electrochemical impedance spectroscopy: EIS) and structural analysis on rust layer formed on the steel surface. Ca-containing inclusions of Ca-Al-Mn-O-S compound are formed if the amount of Ca addition is over 25 ppm. Steels with higher Ca content results in higher pH value for condensed water film formed on the steel surface, however, addition of Ni, W, and Mo does not affect pH value of the thin water film. The steels containing a high amount of Ca, Ni, W and Mo showed a dense and compact rust layer with enhanced amount of ${\alpha}-FeOOH$. Addition of Ni, W and Mo in Ca-modified weathering steel shows anion-selectivity and contributes to lower the permeability of $Cl^{-}$ ions. Effect of each alloying element on the formation of protective rust layer will be discussed in detail with respect to corrosion resistance.

Quality Characteristics of Sugar Snap-Cookie Added to Carrot Powder (I) - Rheology Characteristics of Cookie Dough - (당근 분말을 첨가한 Sugar Snap-Cookie의 품질 특성에 관한 연구(1) - 반죽의 리올로지 특성 -)

  • Hwang, Seung-Hwan;Hong, Jin-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.1
    • /
    • pp.122-127
    • /
    • 2010
  • This study involved the making of sugar snap cookies with the addition of carrot powder at two to twelve percent which furnishes modern people with much lacking and needed dietary fiber. The review of the physiochemical properties, rheology and sensory evaluation of such contents resulted in the following findings: The sedimentation value and Pelshenke value all decreased in weak flour with the addition of more carrot powder, in comparison with the control group. The water retention capacity (WRC) and alkaline water retention capacity (AWRC) all increased in weak flour with the addition of more carrot powder in comparison with the control group. As for the gelatinization properties of the test samples measured by rapid visco-analysis, the addition of more carrot powder resulted in the initial pasting temperatures increasing in the case of weak flour, yet showing no significant difference between the control group and the carrot-added groups, as well as the maximum viscosity, minimum viscosity and final viscosity all showed the tendency of decreasing. The addition of more carrot powder led to the peak times in the mixographs for weak flour all exhibiting the tendency of decreasing, which might be interpreted as gradually weaker physical properties of the dough as well as less stability in the shape of the dough in turn.

Physicochemical Quality of Functional Gluten-Free Noodles added with Nondigestible Maltodextrin (난소화성 말토덱스트린을 첨가한 기능성 글루텐 프리면의 이화학적 품질 특성)

  • Nam, Seung-Woo;Kim, Eun;Kim, Meera
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.4
    • /
    • pp.681-690
    • /
    • 2015
  • In this study, gluten-free noodles were developed and the physicochemical quality of gluten-free noodles added with nondigestible maltodextrin (NMD) was also investigated. The gluten-free noodles were prepared by addition of 0, 5, 7, and 9% NMD of total ingredients except water. Inhibition activities for ${alpha}$-amylase and ${alpha}$-glucosidase according to the addition amounts of NMD were evaluated. As a result, activities of carbohydrate-digestive enzymes decreased with an increase of the added NMD amounts. Water binding capacity and solubility of raw noodles increased upon NMD addition. Swelling power also increased as temperature rose. L value of raw noodles decreased with the addition of NMD, but b value increased. Texture profile analysis of cooked noodles showed reduction of hardness, springiness, and chewiness of noodles with NMD. On the other hand, tensile strength of cooked noodles containing up to 7% NMD was not significantly different from that of noodle without NMD. In the sensory evaluation, elasticity of noodles with 9% NMD was lower than that of other noodles, whereas other characteristics of noodles were not significantly different among noodles. Therefore, it was confirmed that the addition of 5~7% NMD had little effect on the sensory quality of noodles.

Trihalomethane Formation by Chlorine Dioxide in Case of Water Containing Bromide Ion (브롬이온을 함유한 상수 원수에 이산화염소 주입시 THM생성거동에 관한 연구)

  • Lee, Yoon-Jin;Lee, Hwan;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.83-88
    • /
    • 1999
  • This study was carried out to examine the behavior of THM formation in water treated with chlorine dioxide where humic acid was used as THM precursor. THM was not detected in bromide-free water, but formed in water containing bromide. When 10 mg/l of chlorine dioxide was added to water containing 5 mg/l of humic acid and bromide respectively, 20.46 ${\mu}$g/l of THM was formed. It is postulated that chlorine dioxide oxidize bromide to hydrobromous acid, which subsequently reacted with humic acids similar to chlorine reaction. The formation of THM could be reduced at low pH. Among THM formed, CHBr$_3$ was the predominant species in the alkaline solution, while CHCl$_3$ in the acidic solution. A sample pretreated with chlorine dioxide for 24h before addition of chlorine showed a reduction of 75.1% in THM formation, compared with a sample not pretreated with chlorine dioxide and a sample treated by chlorine for 24h prior to addition of chlorine dioxide also showed a reduction of 37.8% in THM formation, compared with a sample not added with chlorine dioxide. It may explain that chlorine dioxide oxidizes directly a fraction of THM.

  • PDF

Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents

  • Tian, Xuemei;Zhang, Suoqin;Zheng, Liangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2016
  • The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction.

Effect of Clay Type and Concentration on Optical, Tensile and Water Vapor Barrier Properties of Soy Protein Isolate/Clay Nanocomposite Films

  • Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.99-104
    • /
    • 2009
  • Soy protein isolate (SPI)-based nanocomposite films with three different types of nanoclays, such as Cloisite $Na^+$, Cloisite 20A, and Cloisite 30B, were prepared using a solution casting method, and their optical, tensile, and water vapor barrier properties were determined to investigate the effect of nano-clay type on film properties. Among the tested nanoclays, Cloisite $Na^+$, a hydrophilic montmorillonite (MMT), exhibited the highest transparency with least opaqueness, the highest tensile strength, and the highest water vapor barrier properties, indicating Cloisite $Na^+$ is the most compatible with SPI polymer matrix to form nanocomposite films. The film properties of SPI/Cloisite $Na^+$ nanocomposite films were strongly dependent on the concentration of the clay. Film properties such as optical, tensile, and water vapor barrier properties improved significantly (p<0.05) as the concentration of clay increased. However, the effectiveness of addition of the clay reduced above a certain level (i.e., 5wt%), indicating that there is an optimum amount of clay addition to exploit the full advantage of nanocmposite films.

  • PDF

Effect of Biosurfactant Addition on the Biodegradation of Phenanthrene in Soil-water System

  • Shin, Kyung-Hee;Kim, Ju-Yong;Kim, Kyoung-Woong
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • The extent of solubility enhancement by biosurfactant was examined at various pHs prior to the biodegradation experiments. The molar solubilization ratio (MSR) was calculated from the batch solubilization experiments and the highest MSR was detected at pH 5. The effect of the biosurfactant, rhamnolipids, on the phenanthrene mineralization in soil-water system was investigated. The strain 3Y was selected for the mineralization assay and large amounts of phenanthrene were degraded at neutral pH in soil-water system without the biosurfactant. The addition of 150 mg/L rhamnolipids showed no effect on mineralization of phenanthrene in soil-water system, and total mineralization rates after 6 weeks incubation at each pH showed no differences in presence and absence of rhamnolipids. Our result indicated that the toxic effect of rhamnolipids can disappear when soil particles exist, and also the enhanced solubility of phenanthrene does not work for mineralization enhancement in this soil-water system.

Hydrodynamic Characteristics of Deepwater Drillship for North Sea (북해용 심해 시추 선박의 유체성능 특성 평가)

  • Kim, Mun Sung;Park, Jong Jin;Ahn, Young Kyu;Kim, Hong Su;Chun, Ho Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.300-308
    • /
    • 2015
  • With the increases in oil and gas prices, and energy consumption, drillship construction has increased during the last decade. A drillship using a dynamic positioning (DP) system to maintain its position and heading angle during drilling operations. In addition, a drillship is equipped with a moonpool structure to allow its drilling systems to be operated in the midship section. A drillship for the North Sea is specially designed to endure harsh environmental loads. For safe operation in the North Sea, the drillship should have good motion response and robust hull strength. A break water should be considered on the bow and side deck to prevent the green water on deck phenomenon from incoming waves. In addition, the moonpool should be designed to reduce the speed loss and resonance motion. In this study, the hydrodynamic characteristics of a drillship for the North Sea were examined in relation to the motion, wave loads, green water, and moonpool resonance in the initial design stage.

Korean Lignocellulosics and Portland Cement as a Structural Material (건축재로 국산목질과 포틀랜드 시멘트)

  • Ahn, Won-Yung;Moslemi, Ali A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.36-46
    • /
    • 1984
  • In order to investigate the inhibitory index (I) and the effects of hot water extraction treatments and addition of accelerators on the index in hardening of Korean lignocellulosics, portland cement (Type I) and water system, hydration tests were carried out on 8 Korean lignocellulosics, namely, Pinus densiflora, Pinus rigida, Pinus koraiensis, Abies holophylla, Larix leptoiepis, Populus alba-glandulosa, rice husk and rice stalk with or without hot water extraction or chemical additives. The inhibitory index of Pinus densiflora and Pinus rigida found to be suitable under limited conditions for composite without any treatment. With hot water treatment rice husk, Pinus koraiensis, Larix leptolepis, and A hies holophylla were reclassified from not suitable to suitable under limited conditions. Combining hot water extraction with chemical addition of accelerator, calcium chloride of magnesium chloride, Populus alba-glandulosa, Larix leptolepis, and Pinus rigida became highly suitable.

  • PDF