• Title/Summary/Keyword: water account

Search Result 815, Processing Time 0.031 seconds

Analysis of Salinity Impacts on Agricultural and Urban Water Users

  • Michelsen, Ari;Sheng, Zhuping;McGuckin, Thomas;Creel, Bobby;Lacewell, Ron
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.13-13
    • /
    • 2011
  • The Rio Grande Compact Commission, in collaboration with local water management entities, water users and universities established a three state Rio Grande The Rio Grande Compact Commission, in collaboration with local water management entities, water users and universities established a three state Rio Grande Salinity Management Program. The objectives of the Rio Grande Project Salinity Management Program are to reduce salinity concentrations, loading, and salinity impacts in the Rio Grande basin for the 270 mile river reach from San Acacia, New Mexico to Fort Quitman, Texasto increase usable water supplies for agricultural, urban, and environmental purposes. The focus of this first phase of the program is the development of baseline salinity and hydrologic information and a preliminary assessment of the economic impacts of salinity. An assessment of the economic impacts of salinity in this region was conducted by scientists at Texas A&M University's AgriLife Research Center at El Paso and New Mexico State University. Economic damages attributable to high salinity of Rio Grandewater were estimated for residential, agricultural, municipal, and industrial uses. The major impact issues addressed were: who is being affected the types of economic impacts the magnitude of economic damages overall and by user category and identification of threshold-effect levels for different types of water use. Salinity concentrations in this 270 mile reach of the river typically range from 480 ppm to 1,200 ppm, but can exceed 3,000 ppm in the lower section of this reach. Economic impacts include reductions in agricultural yields, reduced water appliance life, equipment replacement costs, and increased water supply costs. This preliminary economic assessment indicates annual damages of $10.5 million from increased water salinity. Under current water uses, municipal and industrial uses account for 75% of the total estimated impacts. However, agricultural impacts are based on current crop pattern yield reductions and, salinity leaching requirements and do not account for the impacts of reduced revenue from having to grow salinity tolerant, lower value crops. Actual damages are anticipated to be significantly higher with the inclusion of these additional agricultural impacts plus the future impacts from the growing population in the region. A more comprehensive economic analysis is planned for the second phase of this program. Results of the economic analysis are being used to determine the feasiblity of salinity control alternatives and what salinity reduction control measures will be pursued.

  • PDF

Operational Hydrological Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수문 유출 예측)

  • Shin, Changmin;Na, Eunye;Lee, Eunjeong;Kim, Dukgil;Min, Joong-Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.212-222
    • /
    • 2013
  • A watershed model was constructed using Hydrological Simulation Program Fortran to quantitatively predict the stream flows at major tributaries of Nakdong River basin, Korea. The entire basin was divided into 32 segments to effectively account for spatial variations in meteorological data and land segment parameter values of each tributary. The model was calibrated at ten tributaries including main stream of the river for a three-year period (2008 to 2010). The deviation values (Dv) of runoff volumes for operational stream flow forecasting for a six month period (2012.1.2 to 2012.6.29) at the ten tributaries ranged from -38.1 to 23.6%, which is on average 7.8% higher than those of runoff volumes for model calibration (-12.5 to 8.2%). The increased prediction errors were mainly from the uncertainties of numerical weather prediction modeling; nevertheless the stream flow forecasting results presented in this study were in a good agreement with the measured data.

A Study on Development of a Plugging Margin Evaluation Method Taking Into Account the Fouling of Shell-and-Tube Heat Exchangers

  • Hwang, Kyeong-Mo;Jin, Tae-Eun;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1934-1941
    • /
    • 2006
  • As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.

The Economic Impact Analysis on the Water Industry with Social Accounting Matrix (사회계정행렬을 이용한 수자원분야 정책 효과 분석)

  • Choi, Hanjoo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.95-106
    • /
    • 2014
  • This paper analyses the economic effects of the water industry on the Korean economy by using Social Accounting Matrix (SAM). The SAM is constructed based on the Input-Output table, National account and Family income and expenditure survey for Korea in 2009. Through the SAM multiplier analysis, I estimate the effects of water investment. As the results, this study has found the followings. i) output multiplier effects of water sector are 5.300~7.741, ii) value added multiplier effects of water sector are 0.685~1.158, iii) income multiplier effects of water sector are 0.511~0.984, iv) redistributed income multiplier effects of water sector are -0.096~0.247. The results indicate that a significant influence on the industrial production and the household income in Korea.

Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids (스마트 워터 그리드(Smart Water Grid) 수자원 분배를 위한 컨텍스트 인지 추천시스템)

  • Yang, Qinghai;Kwak, Kyung Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.80-89
    • /
    • 2014
  • In this paper, we conceive a context-aware recommendations system for water distribution in future smart water grids, with taking the end users' profiles, water types, network conditions into account. A spectral clustering approach is developed to cluster end users into different communities, based on the end users' common interests in water resources. A back-propagation (BP) neural network is designed to obtain the rating list of the end users' preferences on water resources and the water resource with the highest prediction rating is recommended to the end users. Simulation results demonstrate that the proposed scheme achieves the improved accuracy of recommendation within 2.5% errors notably together with a better user experience in contrast to traditional recommendations approaches.

Estimation Instream Flow Incremental Methodology (IFIM)

  • Lee, Joo-Heon;Jeong, Sang-Man;Lee, Myung-Ho;Lee, Soo-Yong;Lee, Eun-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.52-59
    • /
    • 2005
  • The goal of this project is to estimate the instream flow of the Han River Basin to ensure the adequate supply of suitable quality water for preservation and enhancement of aquatic ecosystems. A applied model is Physical Habitant Simulation System(PHABSIM) of Instream Flow Incremental Methodology(IFIM). The parameters which are needed to simulation by PHABSIM such as flow depth, velocity distribution and channel cover with cross section data are obtained by field survey. The Habitat Suitability Criteria with the application of univariate curve on Zacco platypus as a target species was able to be established by conducting the field investigation. The estimated results of ecological recommended instream flow by this study has important meanings that the future river management have to seriously take into account for the natural environment and functions of river system.

  • PDF

Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측)

  • Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.477-480
    • /
    • 2007
  • Hydrate phase equilibrium for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal urn pore size were nealy identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF

Numerical Analysis on the Development of an Undularbore (Undular Bore의 발생과정에 관한 수치 해석)

  • Bea, Heon-Meen;Kim, In-Chull
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.31-35
    • /
    • 1986
  • A bore is a transition between different uniform flows of water. If a long wave of elevation travels in shallow water it steepens and forms a bore. The bore is undular if the change in surface elevation of the wave is less than 0.28 of the original depth of water. This paper describes the growth of an undular bore from a long wave which forms a gentle transition between a uniform flow and still water. A physical account of its development is followed by the results of numerical calculations. Finite-difference approximations are used in the partial differential equations of motion. For undular bores, numerical calculations show that (i) the relationship between relative elevation and relative velocity given by long wave theory is approached for an undular bore, (ii) the amplitude of first crest of an undular bore approaches a finite limit approximately at an exponential rate, and (iii) the distance between the first two crests increases without bound, approximately logarithmically.

  • PDF

Membrane Contactors for Water Carbonation

  • Alessandra Criscuoli;Enrico Drioli
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.59-59
    • /
    • 1991
  • A theoretical and experimental study made in order to determine the performance of mem-brane contactors in water carbonation is presented. In particular on the basis of experimental results pre-viously obtained it has been derived an expression in which the effect of some parameters as temprera-ture water and CO₂ flow rate CO₂ pressure trans-membrane pressure on the performance of the process is taken into account. The study refers to hollow fiber membrane contactors used for the experimental tests. The main scope has been to verify if by membrane contactors it is possible to reach the same de-gree of water carbonation as by trditional methods (1-5 g/1) and to derive for the module used a cor-relation able to describe the performance of the process at several operating conditions. The high CO₂ removal observed confirms the interesting potentialties of membrane contactors also in gas streams purification.

Estimation of Annual Minimal Probable Precipitation Under Climate Change in Major Cities (기후변화에 따른 주요 도시의 연간 최소 확률강우량 추정)

  • Park, Kyoohong;Yu, Soonyu;Byambadorj, Elbegjargal
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.51-58
    • /
    • 2016
  • On account of the increase in water demand and climate change, droughts are in great concern for water resources planning and management. In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using Weibull distribution model with 40-year records of annual minimum rainfall depth collected in major cities of Korea. As a result, the non-stationary minimum probable rainfall was expected to decrease, compared with the stationary probable rainfall. The reliability of ${\xi}_1$, a variable reflecting the decrease of the minimum rainfall depth due to climate change, in Wonju, Daegu, and Busan was over 90%, indicating the probability that the minimal rainfall depths in those city decrease is high.