• 제목/요약/키워드: water/cement ratio

검색결과 1,137건 처리시간 0.028초

고강도 콘크리트의 동결융해 저항 특성에 관한 실험적 연구 (An ExperimentalStudy on the Freeze-Thaw Resistance Properties of High Strength Concrete)

  • 송태경;이남주;김제원;설광욱;정환욱;부척량
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.456-461
    • /
    • 1997
  • The purpose of this experimental study are to produce a durable concrete and to investigate the various factors that can deteriorate the concrete when freezing and thawing activity. Among the various factors that can influence the frost resistance of concrete, this study examined mainly the relationship of the frost resistance with the water-cement ratio, admixture and admixture replacement ratio and propose the available water-cement ratio, admixture and admixture replacement ratio.

  • PDF

점토-시멘트 혼합 지반의 물리적 특성 예측 (Prediction of Physical Characteristics of Cement-Admixed Clay Ground)

  • 박민철;전제성;정상국;이송
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.529-536
    • /
    • 2014
  • 점토-시멘트 혼합토의 물리적 특성인 함수비, 비중, 단위중량과 간극비 등은 혼합토의 강도, 압축성, 압밀거동 예측 등에 적용되는 주요한 인자이다. 기존에는 혼합토의 물리적 특성을 복잡한 실내시험 및 시공 후 확인조사를 통해 이루어 졌다. 본 연구는 점토 함수비 90~170%, 시멘트 함유율 5~25%와 재령기간은 3~90일 조건으로 실내시험을 수행하였으며, 양생 후 혼합토 함수비, 비중, 단위중량과 간극비 등에 대한 변화를 분석하였다. 시험결과를 이용하여 원지반 점토 함수비, 시멘트 함유율과 재령기간 등의 역학적 관계를 바탕으로 혼합토의 함수비, 비중과 단위중량에 관한 물성 예측식을 제안하였다. 혼합토의 물성 예측식을 지반공학 분야에서 일반적으로 사용하는 간극비 산출식에 대입하여 혼합토의 간극비 예측식을 도출하였으며, 방콕 점토를 대상으로 간극비에 대한 실험결과와 본 연구에서 제안한 예측식을 검증하였다.

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

Strength and stiffness characteristics of cement paste-slime mixtures for embedded piles

  • Yong-Hoon Byun;Mi Jeong Seo;WooJin Han;Sang Yeob Kim;Jong-Sub Lee
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.359-370
    • /
    • 2023
  • Slime is produced by excavation during the installation of embedded piles, and it tends to mix with the cement paste injected into the pile shafts. The objective of this study is to investigate the strength and stiffness characteristics of cement pasteslime mixtures. Mixtures with different slime ratios are prepared and cured for 28 days. Uniaxial compression tests and elastic wave measurements are conducted to obtain the static and dynamic properties, respectively. The uniaxial compressive strengths and static elastic moduli of the mixtures are evaluated according to the curing period, slime ratio, and water-cement ratio. In addition, dynamic properties, e.g., the constrained, shear, and elastic moduli, are estimated from the compressional and shear wave velocities. The experimental results show that the static and dynamic properties increase under an increase in the curing period but decrease under an increase in the slime and water-cement ratios. The cement paste-slime mixtures show several exponential relationships between their static and dynamic properties, depending on the slime ratio. The bearing mechanisms of embedded piles can be better understood by examining the strength and stiffness characteristics of cement paste-slime mixtures.

순환골재의 부착 모르타르량이 콘크리트의 특성에 미치는 영향 (Effect of the Amount of Attached Mortar of Recycled Aggregates on the Properties of Concrete)

  • 이원기;최종오;정용욱
    • 한국건설순환자원학회논문집
    • /
    • 제3권2호
    • /
    • pp.132-139
    • /
    • 2015
  • 본 연구는 파쇄처리 순환골재를 사용한 콘크리트의 특성을 검토하기 위하여 순환골재의 흡수율별 단위시멘트량 및 물시멘트비를 변화시켜 콘크리트의 특성에 미치는 영향을 검토하였다. 실험결과 물시멘트비가 높은 저강도 배합에서는 파쇄처리 순환골재를 사용한 콘크리트와 쇄석 콘크리트의 압축강도가 동등한 수준으로 나타나 순환골재의 부착모르타르 영향이 작은 것으로 나타났다. 그러나, 물시멘트비가 낮은 고강도 배합에서는 파쇄처리 순환골재를 사용한 콘크리트가 부착모르타르의 영향으로 쇄석을 사용한 콘크리트보다 약 40%의 압축강도저하를 나타내었다. 한편, 흡수율 7%인 순환골재의 건조수축량은 재령 10주에서 흡수율 1%인 쇄석의 $-310{\times}10^{-6}$보다 2배 증가된 $-700{\times}10^{-6}$을 나타내어 콘크리트용 골재로의 재활용시 건조수축에 대한 검토가 선행되어야 할 것으로 사료된다. 또한 단위시멘트량 $450kg/m^3$인 부배합 콘크리트의 압축강도는 흡수율 3%인 순환골재 사용시 쇄석 사용 콘크리트와 동등하게 나타난 반면, 흡수율 7%인 순환골재를 사용한 경우에는 쇄석 사용 콘크리트에 비해 약 7%정도 낮게 나타났다. 그러나, 단위시멘트량 $350kg/m^3$인 일반배합 콘크리트의 압축강도는 쇄석 사용 콘크리트에 비해 압축강도 저하가 현저하게 나타났다.

지열발전을 위한 지열정 시멘트용 G-class시멘트와 일반 포틀랜드시멘트와의 유동성 비교실험 (An Experimental Comparison of the Fluidity of G-class cement with Portland cement)

  • 전종욱;원종묵;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권2호
    • /
    • pp.1-8
    • /
    • 2012
  • The G-class cement is usually used for geothermal well grouting to protect a steel casing which is equipped in a geothermal well to transfer geothermal water from deep subsurface to ground surface. In geothermal grouting process, obtaining appropriate fluidity is extremely important in order to fill cement grout flawlessly. In this paper, a series of the V-funnel and Slump Flow test was performed on both of the Portland cement and the G-class cement in order to compare fluidity and filling ability of those kind of cements. In the result of V-funnel test, the fluidity of G-class cement was evaluated much better than the Portland cement at the water/cement ratio of 0.8. In the case of Slump Flow test, the fluidity of G- class cement was estimated slightly better than the Portland cement at both the water/cement ratio of 0.55 and 0.8. Even though the initial fluidity and filling ability of G-class cement were relatively higher than the Portland cement, the results could be considerably changed with time. The results show that the fluidity and filling ability for geothermal well cementation can be properly controlled with water content and additives for adverse geothermal well environment.

유동화제 변화에 따른 초미립자 시멘트의 경화특성 (Hardened Properties of Ultra Fine Cement with Superplasticizer)

  • 채재홍;이종열;이웅종;박경상;김진춘;이세웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.69-72
    • /
    • 1999
  • In this study, we blended 2 grades of ultra fine cement using the results of previous stud. And the cement slurry was produced by water each water/cement ratio. The slurries were observed hydration phenomena during 28 days with SEM, XRD and DSC. The specimen made by slurry were evaluated with the hardened properties such as compressive strength, flexural strength length change and water absorption. And were tested the adhesive strength of specimen made by injecting the slurry between mortar bars.

  • PDF

Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete

  • Zhang, Yuanbo;Zhang, Wuman;Zhang, Yingchen
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.47-54
    • /
    • 2019
  • Portland cement pervious concrete has been expected to have good water permeability, mechanical properties and abrasion resistance at the same time when Portland cement pervious concrete is applied to the actual vehicle pavement. In this study, the coarse aggregate and cement were replaced by the fine aggregate and the silica fume to improve actual road performance Portland cement pervious concrete. The Mechanical properties, the water permeability and the abrasion resistance of Portland cement pervious concrete were investigated. The results show that the compressive strength, the flexural strength and the abrasion resistance are increased when the fine aggregate and the silica fume are added to Portland cement pervious concrete separately. However, the porosity and the water permeability are decreased simultaneously. With assistance of silica fume and fine aggregate simultaneously, Portland cement pervious concrete could achieve a higher strength. The compressive strength, the flexural strength and the abrasion resistance of Portland cement pervious concrete mixed with 5% fine aggregates and 8% silica fume are increased by 93.1%, 65% and 65.2%, respectively. The porosity and the water permeability are decreased by 22.4% and 85% when Portland cement pervious concrete is mixed with 5% fine aggregate and 8% silica fume. Therefore, the replacement ratio of the fine aggregates and the silica fume should be considered comprehensively and determined on the premise of ensuring the water permeability coefficient.

지연제 살포량과 물씻기 시간이 골재노출 콘크리트의 표면성상에 미치는 영향 (Surface Properties of Exposed-Aggregate Concrete Depending on Retarder and Water Jet Washing Timing)

  • 박준희;한천구
    • 한국건축시공학회지
    • /
    • 제15권2호
    • /
    • pp.169-175
    • /
    • 2015
  • 본 연구는 콘크리트 마감재로써 골재노출 콘크리트를 개발하기 위한 일련의 실험이다. 실험변수로는 고강도 및 일반강도의 물-시멘트비별 당류계 지연제의 살포량 및 세척시기 변화가 물씻기 공법을 이용한 골재노출 콘크리트의 품질에 미치는 영향을 분석하였다. 그 결과, 물-시멘트비 25%는 세척시점 0.75일, 물-시멘트비 35%와 55%는 1일, 65%는 1.5일에 당류계 지연제를 $24m{\ell}/m^2$ 살포하였을 때 가장 효과적이며 양호한 골재 노출의 표면이 연출되는 것을 확인할 수 있었다.

콘크리트 초기강도에 영향을 미치는 수화물의 정량분석에 관한 연구 (A Quantitative Analysis on Feature of Hydrate Affecting Early-Age Strength)

  • 송태협;이문환;이세현;박동철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.583-586
    • /
    • 2005
  • Strength of concrete is very important factor in design and quality management and may represent overall quality of concrete. Such strength of concrete may differ depending on amount of cement mixed, water and fine aggregate ratio. Classic concrete products have been produced mainly with ordinary portland cement(hereinafter 'cement'), water and fine aggregate as shown above, but various additives and mixture materials have been used for concrete manufacturing, along with development of high functional concrete and diversification of structures. Various kinds of chemical mixtures agents and mixture materials have been used as it requires concretes with other features which cannot be solved with existing materials only, such as high strength, high flexibility and no-separation in the water. Such addition of various mixture agents may cause change in cement hydrate, affecting strength. Hydration of cement is the process of producing potassium hydroxide, C-S-H, C-A-H and Ettringite, while causing heat generation reaction after it is mixed with water, and generation amounts of such hydrates play lots of roles in condensation and hardening. This study aims to analyze its strength and features with hydrates by making specimen according to curing temperature, types of mixture agent, mixing ratio and ages and by analyzing such hydrates in order to analyze role of cement hydrate on early strength of concrete.

  • PDF