• Title/Summary/Keyword: wastewaters

Search Result 177, Processing Time 0.021 seconds

SYSTEMATIC STUDY OF BACTERIAL ORGANISMS ISOLATED FROM A VARIETY OF NATURAL SOURCES OF KOREA

  • Park, Yong-Ha
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.142-149
    • /
    • 2000
  • Recent molecular and polyphasic taxonomic approaches toward bacterial systematics have played a significant role in revolutionizing our insight in the taxonomy of bacterial organisms. This advance has also contributed greatly to delineation of new taxa from bacterial organisms isolated from a variety of natural sources of Korea. Recently, many bacterial organisms have isolated from soil, seawater, foods, wastewaters and humans of Korea and have been subjected to polyphasic taxonomic study. From the results of this study, some isolates have been found to be members of new genera and new species.

  • PDF

BIOCHEMICAL MODEL AND MECHANISM FOR ACINETOBACTER NITRITE INHIBITION

  • Lee, Chan-Won;Weon, Seung-Yeon
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.22-30
    • /
    • 2005
  • Nitrite accumulation is not unusual in batch processes such as sequencing batch reactor (SBR) with high-strength of ammonium or nitrate wastewaters. A possible mechanism of nitrite inhibition on Acinetobacter was depicted in a biochemical model, which the protonated species, nitrous acid form of nitrite, affects proton relating transport at the proton-pumping site crossing the cell membrane under unlimited carbon and phosphorus conditions. This effect exerts inhibition of phosphorylation under aerobic condition and yields low APT/ADP ratio, consequently decrease poly-P synthesis and phosphorus uptake from outside the cell in the model.

Increase of the Treatment Efficiency of a Pharmaceutical Wastewater and a Paperboard Wastewater by the addition of Bacteria (세균첨가에 의한 제약폐수 및 판지폐수의 처리효율의 향상)

  • 이형춘
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.370-374
    • /
    • 2000
  • Some bacterial strains isolated from activated sludges and media and type cultures were cultivated in a pharmaceutical wastewater and a paperboard wastewater and added during batch treatment of those wastewaters in order for these strains to increase the treatment efficiency. Bacillus sp(PC-3) isolated from the charcoal media of the pharmaceutical wastewater plant grew remarkably over there strains in that wastewater and the viable cell count after 24hr cultivation was $1.1{\times}10^6m/L$. Bacillus subtills KCTC 1028 a type strain grew best in the paperboard wastewater and the viable cell count after 24hr cultivation was $1.1{\times}10^7m/L$. Addition of PC-3 in a batch treatment of the pharmaceutical wastewater increased COD removal by 18% after 8 day. And addition of Bacillus subtills KCTC 1028 in a batch treatment of the paperboard wastewater increased COD removal by 14% only after 24hy Bacillus subtills DCTC 1028 was though to be able to be produced economically using alcohol distillery wastewaters from starch material.

  • PDF

Treatment of Pharmaceutical Wastewaters by Hydrogen Peroxide and Zerovalent Iron

  • Jeon, Byeong-Cheol;Nam, Se-Yong;Kim, Young-Kwon
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Fenton reaction with zerovalent iron (ZVI) and $Fe^{2+}$ ions was studied to treat pharmaceutical wastewaters (PhWW) including antibiotics and non-biodegradable organics. Incremental biodegradability was assessed by monitoring biochemical oxygen demand (BOD) changes during Fenton reaction. Original undiluted wastewater samples were used as collected from the pharmaceutical factory. Experiments were carried out to obtain optimal conditions for Fenton reaction under different $H_2O_2$ and ion salts (ZVI and $Fe^{2+}$) concentrations. The optimal ratio and dosage of $H_2O_2$/ZVI were 5 and 25/5 g/L (mass basis), respectively. Also, the optimal ratio and dosage of $H_2O_2/Fe^{2+}$ ions were 5 and 35/7 g/L (mass basis), respectively. Under optimized conditions, the chemical oxygen demand (COD) removal efficiency by ZVI was 23% better than the treatment with $Fe^{2+}$ ion. The reaction time was 45 min for ZVI and shorter than 60 min for $Fe^{2+}$ ion. The COD and total organic carbon (TOC) were decreased, but BOD was increased under the optimal conditions of $H_2O_2$/ZVI = 25/5 g/L, because organic compounds were converted into biodegradable intermediates in the early steps of the reaction. The BOD/TOC ratio was increased, but reverse-wise, the COD/TOC was decreased because of generated intermediates. The biodegradability was increased about 9.8 times (BOD/TOC basis), after treatment with ZVI. The combination of chemical and biological processes seems an interesting combination for treating PhWW.

Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters

  • Kwon, Gyutae;Nam, Ji-Hyun;Kim, Dong-Min;Song, Chulwoo;Jahng, Deokjin
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • This study was aimed to investigate the possibility of using raw and anaerobically-digested piggery wastewater as culture media for a green microalga Chlorella vulgaris (C. vulgaris). Due to high concentration of ammonia and dark color, the microalga did not grow well in this wastewater. In order to solve this problem, air stripping and NaOCl-treatment were applied to reduce the concentration of NH3-N and the color intensity from the wastewater. Algal growth was monitored in terms of specific growth rate, biomass productivity, and nutrient removal efficiency. As a result, C. vulgaris grew without any sign of inhibition in air-stripped and 10-folds diluted anaerobically-digested piggery wastewater with enhanced biomass productivity of 0.57 g/L·d and nutrient removal of 98.7-99.8% for NH3-N and 41.0-62.5% for total phosphorus. However, NaOCl-treatment showed no significant effect on growth of C. vulgaris, although dark color was removed greatly. Interestingly, despite that the soluble organic concentration after air stripping was still high, the biomass productivity was 4.4 times higher than BG-11. Moreover, air stripping was identically effective for raw piggery wastewater as for anaerobic digestate. Therefore, it was concluded that air stripping was a very effective method for culturing microalgae and removing nutrients from raw and anaerobically-digested piggery wastewaters.

Operation of UASB Reactor for Treatment of Dairy Wastewaters (유가공폐수 처리를 위한 UASB 반응조 운전)

  • Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.37-45
    • /
    • 1995
  • The performance and the operational problems of UASB(Upflow Anaerobic Sludge Blanket) reactor for treatment of dairy wastewaters were investigated. Synthetic milk wastewater was successfully treated up to the loading rate of 3.9kg $COD/m^3.day$, with a specific gas production rate of 1. 23 I/I. day and a COD removal efficiency of over 90%. However, the sludge rising was observed at the loading rate of 2.1kg $COD/m^3.day$, due probably to the formation of scum layer at the surface of settling compartment. The BMP(biochemical methane potential) of raw milk wastewater and ice cream wastewater, measured by using SBT(serum bottle test), were 0.135 and 0.66ml $CH_4/mg\;COD_{added}$, respectively. The sludge activity increased more than 8 times from 0.159g $COD-CH_4/g$ VSS. d during 90 days of operation.

  • PDF

Sources and Distributions of Organic Wastewater Compounds on the Mokpo Coast of Korea

  • Choi, Min-Kyu;Choi, Hee-Gu;Moon, Hyo-Bang;Yu, Jun;Kang, Sung-Kyung;Choi, Su-Kyung
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.205-214
    • /
    • 2007
  • Surface water and sediment samples collected from the Mokpo coast of Korea were analyzed for molecular markers of organic municipal wastewaters, i.e., 11 fecal sterols including coprostanol (Cop) and nonylphenolic compounds (NPs), to characterize the main routes of these wastewaters to the coast and to assess contamination levels. Concentrations of Cop ranged from 94 to 7,568 ng/L in surface water and from 43 to 38,108 ng/g dry weight in sediments. Concentrations of NPs [nonylphenol (NP) and nonylphenol mono- and di-ethoxylates ($NP_{1-2}EOs$)] ranged from 123 to 4,729 ng/L in surface water and from 4 to 2,119 ng/ng dry weight in sediments. The levels of these compounds were much higher at stations near the rivers that pass through the urban center of Mokpo and the outfall of the wastewater treatment plant (WWTP). The spatial distribution of Cop levels was statistically similar to that of NPs (r=0.809 and 0.982 in surface water and sediments, respectively), indicating that these compounds may have similar discharge points, transport, mixing, and deposition in the study area. These results suggest that considerable amounts of organic wastewater compounds are discharged through rivers and WWTP effluent to the Mokpo coast.

Hydrogen Production from Fruit Wastes by Immobilized Cells of Enterobacter cloacae VJ-1 (Enterobacter cloacae YJ-1의 고정화세포에 의한 과일 폐기물로부터 수소생산)

  • Lee, Ki-Seok;Huh, Yang-Il;Chung, Seon-Yong;Kang, Chang-Min
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.447-452
    • /
    • 2005
  • The hydrogen production using immobilized cellsl was conducted using fruit wastewaters at various culture conditions. Three kinds of fruit wastewaters, melon, watermelon and pear were used. Sodium alginate was used as immobilization material. Among them, concentration of reducing sugar which was one of the main components in fruit was the highest at watermelon wastewater, and also hydrogen production was the highest as 2319.2 mL/L in it. Although hydrogen production was not much changed according to sodium alginate concentration, its production was the most at 3%(w/v). As bead size as small, hydrogen production was higher. With inspection of interior, it confirmed that the cell grew well in bead. But the addition of amino acids using as agent for metabolite production had almost no affected on hydrogen productivity. The effective range of $FeSO_4$ addition on hydrogen production were up to 1.2 g/L, and above the concentration, it inhibited the productivity. Organic acids produced during watermelon fermentation were mainly lactic acid, butyric acid, abd acetic acid; and a little of propionic acid.

Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials

  • DEN, Muhammed Kamil O;ONGAR, Sezen KUC UKC
    • Advances in environmental research
    • /
    • v.8 no.1
    • /
    • pp.23-38
    • /
    • 2019
  • In this study, Malachite Green (MG) dye removal from synthetic wastewaters by adsorption process using raw boron enrichment waste (BEW) and it's modifications (with acid and ultrasound) were aimed. 81% MG removal was obtained by BEW at optimum equilibrium conditions (time: 40 min., dosage: 500 mg/dm3, pH: 5-6, speed: 200 rpm, 298 K). MG removal from wastewaters using acid modified boron enrichment waste (HBEW) was determined as 82% at optimum conditions (time: 20 min., dosage: 200 mg/dm3, pH: 10, speed: 200 rpm, 298 K). For ultrasound modified BEW (UBEW), the highest MG removal percent was achieved as 84% at optimum conditions (time: 30 min, dosage: 375 mg/ dm3, pH: 8, speed: 200 rpm, 298 K). The equilibrium data of Malachite Green was evaluated for BEW, HBEW and UBEW adsorbents by using sorption isotherms such as Langmuir, Freundlich and Temkin models, out of which Langmuir model (R2 = 0.971, 0.987 and 0.984) gave better correlation and maximum adsorption capacity was found to be 147.05, 434.78 and 192.30 mg/g, respectively. The adsorption kinetics followed the pseudo-second-order kinetic equation for sorption of MG onto wastes. A look at thermodynamic data reveals that natural sorption is spontaneous and endothermic because of free negative energy exchange and positive change in enthalpy, respectively. The results indicated that boron enrichment waste, and HCl and ultrasound-modified boron enrichment waste served as good alternative adsorbents in dye removal from wastewater.

Size Estimation of Microalgal System for Nitrogen Removal (미세조류를 이용한 질소제거 장치의 크기)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Korean wastewaters have higher nitrogen concentrations than typical wastewaters of other countries. Most treatment processes such as activated sludge processes will need to supplement extra carbon sources for a complete removal of remaining nitrogen after the initial wastewater treatment, Because of these difficult matters, we have searched wastewater treatment methods that require no additional carbon sources. Wastewater treatment by microalgae in photobioreactors, using a green eukaryotic microalgae, Chlorella kessleri, showed a promising results and thus was selected to study further. This system is not intended to replace the conventional system but is to assist the existing biological treatment systems as a supplemental nitrogen removal process. Thus the secondary treated livestock wastewater was tested. Column type photobioreactors developed in our laboratory were used. When aerated with 5% CO$_2$ balanced with air at 1 vvm and illuminated at 100 ${\mu}$mol/㎡/s under 25$^{\circ}C$ and PH 7-8 by CO$_2$ buffering effect, the maximum nitrogen removal rate was 2.6 mg/L/hr. The results confirmed a possibility of microalgal wastewater treatment system as a secondary system to remove extra nitrogen sources. Based on these experimental results, the size of the optimal microalgal wastewater system was calculated. For the wastewater whose initial nitrogen concentration of 150 mg/L, the optimal batch system was found to be a 2 stage system with a combined retention time of 4.6 day. From the continuous experiments, nitrogen removal rates were examined under different dilution rates and 2 stage system was also found to be the optimal system. The combined retention time for the continuous system was 3.5 days. It is expected that conventional biological wastewater treatment systems followed by microalgal systems would reliably decrease the nitrogen concentration below the government criteria even for the livestock wastewater with low C/N ratio.