• Title/Summary/Keyword: wastewater treatment and management

Search Result 292, Processing Time 0.029 seconds

시계열모델을 이용한 하수처리장 유입수 성상 예측 (Forecast of Influent Characteristics in Wastewater Treatment Plant with Time Series Model)

  • 김병군;문용택;김홍석;김종락
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.701-707
    • /
    • 2007
  • The information on the incoming load to wastewater treatment plants is not often available to apply to evaluate effects of control actions on the field plant. In this study, a time series model was developed to forecast influent flow rate, BOD, COD, SS, TN and TP concentrations using field operating data. The developed time series model could predict 1 day ahead forecasting results accurately. The coefficient of determination between measured data and 1 day ahead forecasting results has a range from 0.8898 to 0.9971. So, the corelation is relatively high. We made forecasting program based on the time series model developed and hope that the program will assist the operators in the stable operation in wastewater treatment plants.

Estimation of greenhouse gas emissions from an underground wastewater treatment plant

  • Kyung, Daeseung;Jung, Da-Yoon;Lim, Seong-Rin
    • Membrane and Water Treatment
    • /
    • 제11권3호
    • /
    • pp.173-177
    • /
    • 2020
  • Wastewater treatment plants (WWTPs) have been recognized as one of the significant greenhouse gas (GHG) generators, due to the complex biochemical reaction and huge consumption of energy and materials. Recently, WWTPs have been built underground and they will be confronted with the challenges of mitigating GHG emissions and improving the quality of treated wastewater. Here, we focus on estimating GHG emissions to set up effective management plans for a WWTP built underground. First, we apply the process-based life cycle assessment (LCA) with an inventory database of the underground WWTP for a case study. Then, we identify significant factors affecting GHG emissions during service life using sensitivity analysis and suggest the proper tactics that could properly reduce GHG emissions from the WWTP.

Removal of acetaminophen from wastewater by constructed wetlands with Scirpus validus

  • Phong, Vo Hoang Nhat;Koottatep, Thammarat;Chapagain, Saroj Kumar;Panuvatvanich, Atitaya;Polprasert, Chongrak;Ahn, Kyu-Hong
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.164-170
    • /
    • 2016
  • Since most of the existing wastewater treatment options lack the ability to treat micro-contaminants, the increased use of pharmaceuticals and personal care products (PPCPs) and release as human waste have become a serious concern in recent years. Constructed wetlands (CWs) are a low-cost technology for wastewater treatment, however, its performance in term of PPCPs removal has not yet been fully investigated. This study aimed to characterize the removal factors and efficiency of acetaminophen (ACT) removal by CWs. The results revealed the decreased concentrations of ACT with increasing hydraulic retention times (HRT) of 0, 3, 5 days. The contribution of removal factors was found to be varied with initial ACT concentration. At the low ACT concentration (i.e. 1 ppb), plant uptake was the dominant, followed by microbial and photolytic removal. In contrast, at the high ACT concentration (i.e. 100 ppb), microbial and photolytic removal were found as dominant factors. On the other hand, hydrogen peroxide ($H_2O_2$) concentration was found at higher level in the plant shoot than in the root probably due to occurrence of the Fenton reaction resulting in PPCPs removal.

인공습지를 이용한 축산폐수의 처리 (Livestock Wastewater Treatment by a Constructed Wetland)

  • 박재홍;최의소;조일형
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.157-162
    • /
    • 2004
  • Constructed wetlands are considered as an important tool for wastewater treatment, wastewater management and flooding control. In addition, one of the most promising technologies for application in many countries seems to be constructed wetlands, due to their properties such as utilization of natural processes, simple construction, operation and maintenance, process stability, cost effectiveness, etc. This study considered possibility of treatment of livestock wastewater using a constructed wetland. The removal efficiencies of $COD_{cr}$, TOC, TN, TP, SS, and color were 97.6%, 96.6%, 97.0%, 96.7%, 99.0%, and 85.6%, respectively. In particular, SS was completely removed. However, $Cl^{-}$ concentration of the constructed wetland effluent was higher than that in influent. In conclusion, constructed wetlands could be applied to livestock wastewater treatment if $Cl^{-}$ would be properly treated. Further, it needs time for stabilization to reduce the pollutants which were accumulated in soil.

Integrated Eco-Engineering Design for Sustainable Management of Fecal Sludge and Domestic Wastewater

  • Koottatep, Thammarat;Polprasert, Chongrak;Laugesen, Carsten H.
    • 한국습지학회지
    • /
    • 제9권1호
    • /
    • pp.69-78
    • /
    • 2007
  • Constructed wetlands and other aquatic systems have been successfully used for waste and wastewater treatment in either temperate or tropical regions. To treat waste or wastewater in a sustainable manner, the integrated eco-engineering designs are explained in this paper with 2 case studies: (i) a combination of vertical-flow constructed wetland (CW) with plant irrigation systemfor fecal sludge management and (ii) integrated CW units with landscaping at full-scale application for domestic wastewater treatment. The pilot-scale study of fecal sludge management employed 3 vertical-flow CW units, each with a dimension of $5{\times}5{\times}0.65m$ (width ${\times}$ length ${\times}$ media depth) and planted with cattails (Typha augustifolia). At the solid loading rate of 250 kg total solids (TS)/$m^2.yr$ and a 6-day percolate impoundment, the CW system could achieve chemical oxygen demand (COD), TS and total Kjeldahl nitrogen (TKN) removal efficiencies in the range of 80 - 96%. The accumulated sludge layers of about 80 - 90 cm was found at the CW bed surface after operating the CW units for 7 years, but no clogging problem has been observed. The CW percolate was applied to 16 irrigation Sunflower plant (Helianthus annuus) plots, each with a dimension of $4.5{\times}4.5m$ ($width{\times}length$). In the study, the CW percolate were fed to the treatment plots at the application rate of 7.5 mm/day but the percolate was mixed with tap water at different ratio of 20%, 80% and 100%. Based on a 1-year data of 3-crop plantation were experimented, the contents of Zn, Mn and Cu in soil of the experimental plots were found to increase with increasing in CW percolate ratios. The highest plant biomass yield and oil content of 1,000 kg/ha and 35%, respectively, were obtained from the plots fed with 20% or 50% of the CW percolate, whereas no accumulation of heavy metals in the plant tissues (i.e. leaves, stems and flowers) of the sunflower is found. In addition to the pilot-scale and field experiments, a case study of the integrated CW systems for wastewater treatment at Phi Phi Island (a Tsunami-hit area), Krabi province, Thailand is illustrated. The $5,200-m^2$ CW systems on Phi Phi Island are not only for treatment of $400m^3/day$ wastewater from hotels, households or other domestic activities, but also incorporating public consultation in the design processes, resulting in introducing the aesthetic landscaping as well as reusing of the treated effluent for irrigating green areas on the Island.

  • PDF

A Review of Constructed Wetlands for Water Quality Management in India

  • Farheen, Shaista;Geronimo, Franz Kevin;Guerra, Heidi;Reyes, Nash Jett;Choi, Hyseon;Jeon, Minsu;Kim, Lee-Hyung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.129-129
    • /
    • 2021
  • Constructed wetlands (CW) are artificially developed wetlands that are used to control water pollution. In central India, the field application of CW started on the late 1990s but are mostly focused on wastewater treatment. In this paper, different existing and experimental studies on constructed wetlands were reviewed to be able to determine the current status of wetlands in India to identify the type of CW that is more suitable in managing a specific target pollutant and type of wastewater. Wetlands were categorized into three types: vertical flow, horizontal flow, and hybrid while the wastewater were classified as domestic and industrial. Based on the review, 80% of constructed wetlands are used for treating domestic wastewater while 20% are treating industrial wastewater. Inflow analysis showed that industrial wastewater in hybrid constructed wetland produced the highest average concentration for parameters like COD (2851 mg/L) and BOD (5715 mg/L) while the lowest concentration was TN (13.97 mg/L) found in municipal wastewater. In terms of removing nonpoint source pollutants, it was revealed that vertical flow constructed wetlands (VFCW) are more effective at removing TSS and BOD as compared to horizontal flow constructed wetlands (HFCW) and hybrid constructed wetlands (HCW). HCW were found to be capable of efficiently removing COD and TN. Meanwhile, HFCW showed the highest TP removal among all the types of wetlands. In addition, VFCW were more effective for domestic wastewater while HCW are more effective for treating industrial wastewater. Lastly, there is currently a need to conduct further research on constructed wetlands for industrial wastewater as well as stormwater treatment to be able to gather more data and improve wetland design, performance, and maintenance.

  • PDF

BIM 기반 하수처리시설 유지관리 프로토타입 시스템 개발 (Development of BIM based Maintenance Management Prototype System for Wastewater Treatment Plant)

  • 엄동용;최재호
    • 대한토목학회논문집
    • /
    • 제34권6호
    • /
    • pp.1901-1910
    • /
    • 2014
  • 현재 국내외 BIM을 도입한 사회기반시설 적용 사례는 BIM 시각화를 기반으로 하는 설계 및 시공단계에 제한되며 효율적 운영을 위한 설계, 시공 정보 활용 방안에 대한 연구는 매우 미미하다. 본 연구는 최근 국내 경제 발전에 많은 기여를 하고 있는 산업설비군 중 운영 및 유지관리 능력 향상이 필요한 하수처리시설을 대상으로 BIM 기반 통합 유지관리 프로토타입 시스템을 개발하였다. 본 연구에 사용된 주요 연구 방법으로는 시스템 개발 순서에 따라 진행하였으며, 최종적으로 개발된 프로토타입 시스템의 현업 적용 가능성을 판단하기 위하여 4가지의 대표적 유지관리 시나리오를 제안하고 산출물을 통해서 문제 해결이 가능함을 보여준다. 최근 상하수도시설의 자산관리 개념 도입 노력과 유역기반 운영 및 유지관리의 정책 및 제도 적 변화, 그리고 국내 상하수도 기술력의 해외시장 진출 필요에 따른 운영 및 유지관리 능력 고도화를 위해 본 연구결과가 일조할 수 있기를 기대해 본다.

하수 유래 미량오염물질 현황과 관리 방안 고찰 (A review on status of organic micropollutants from sewage effluent and their management strategies)

  • 최상기;이웅배;김영모;홍석원;손희종;이윤호
    • 상하수도학회지
    • /
    • 제35권3호
    • /
    • pp.205-225
    • /
    • 2021
  • Due to the large-scale production and use of synthetic chemicals in industralized countries, various chemicals are found in the aquatic environment, which are often termed as micropollutants. Effluents of municipal wastewater treatment plants (WWTPs) have been identified as one of the major sources of these micropollutants. In this article, the current status of occurrence and removal of micropollutants in WWTPs and their management policies and options in domestic and foregin countries were critically reviewed. A large number of pharmaceuticals, personal care products, and industrial chemicals are found in WWTPs' influent, and are only partially removed by current biological wastewater treatment processes. As a result, some micropollutants are present in WWTPs' effluents, which can negatively affect receiving water quality or drinking water source. To better understand and assess the potential risk of micropollutants, a systematic monitoring framework including advanced analytical tools such as high resolution mass spectrometry and bioanalytical methods is needed. Some Western European countries are taking proactive approach to controlling the micropollutants by upgrading WWTP with enahnced effluent treatment processes. While this enahnced WWTP effluent treatment appears to be a viable option for controlling micropollutant, its implementation requires careful consideration of the technical, economical, political, and cultural issues of all stakeholders.

Development of the ultra/nano filtration system for textile industry wastewater treatment

  • Rashidi, Hamidreza;Sulaiman, Nik Meriam Nik;Hashim, Nur Awanis;Bradford, Lori;Asgharnejad, Hashem;Larijani, Maryam Madani
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.333-344
    • /
    • 2020
  • Advances in industrial development and waste management over several decades have reduced many of the impacts that previously affected ecosystems, however, there are still processes which discharge hazardous materials into environments. Among industries that produce industrial wastewaters, textile manufacturing processes play a noticeable role. This study was conducted to test a novel continuous combined commercial membrane treatment using polyvinylidene fluoride (PVDF), ultrafiltration (UF), and polyamide (PA) nanofiltration (NF) membranes for textile wastewater treatment. The synthetic textile wastewater used in this study contained sodium silicate, wax, and five various reactive dyes. The results indicate that the removal efficiency for physical particles (wax and resin) was 95% through the UF membrane under optimum conditions. Applying UF and NF hybrid treatment resulted in total effective removal of dye from all synthetic samples. The efficiency of sodium silicate removal was measured to be between 2.5 to 4.5% and 13 to 16% for UF and NF, respectively. The chemical oxygen demand in all samples was reduced by more than 85% after treatment by NF.