• Title/Summary/Keyword: wastewater sampling

Search Result 99, Processing Time 0.021 seconds

Physico-chemical Characteristics and In situ Fish Enclosure Bioassays on Wastewater Outflow in Abandoned Mine Watershed (폐광산 지역의 유출수에 대한 이.화학적 수질특성 및 Enclosure 어류 노출시험 평가)

  • An, Kwang-Guk;Bae, Dae-Yeul;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.218-231
    • /
    • 2012
  • The objectives of this study were to evaluate the physico-chemical water quality, trophic and tolerance guilds in the control ($C_o$) and impacted streams of the abandoned mine, along with the ecological health, using a multimetric health model and physical habitat conditions of Qualitative Habitat Evaluation Index (QHEI), during the period of three years, 2005~2007. Also, eco-toxicity ($EE_t$) enclosure tests were conducted to examine the toxic effects on the outflows from the mine wastewater, using the sentinel species of Rhynchocypris oxycephalus, and we compared the biological responses of the control ($C_o$) and treatment (T) to the effluents through a Necropybased Health Assessment Index ($N_b$-HAI). Tissue impact analysis of the spleen, kidney, gill, liver, eyes, and fins were conducted in the controlled enclosure experiments (10 individuals). According to the comparisons of the control ($C_o$) vs. the treatment (T) in physicochemical water quality, outflows from the abandoned mine resulted in low pH of 3.2, strong acid wastewater, high ionic concentrations, based on an electrical conductivity, and high total dissolved solid (TDS). Physical habitat assessments, based on Qualitative Habitat Evaluation Index (QHEI) did not show any statistical differences (p>0.05) in the sampling sites, whereas, the $M_m$-EH model values in a multimetric ecological health ($M_m$-EH) model of the Index of Biological Integrity (IBI), using fish assemblages, were 16~20 (fair condition) in the control and all zero (0, poor condition) in the impacted sites of mine wastewater. In addition, in enclosure eco-toxicity ($EE_t$) tests, the model values of $N_b$-HAI ranged between 0 and 3 in the controls during the three years, indicating an excellent~good condition (Ex~G), and were >100 (range: 100~137) in the impacted sites, which indicates a poor condition (P). Under the circumstances, organ tissues, such as the liver, kidney, and gills were largely impaired, so that efficient water quality managements are required in the outflow area of the abandoned mine watershed.

Polycyclic Aromatic Hydrocarbons in Industrial Organic Sludge from Wastewater Treatment Facilities in Korea (폐수처리시설에서 발생된 유기성 슬러지에 함유된 다환방향족탄화수소의 농도 특성)

  • Nam, Seong-Nam;Lee, Mi-Young;Yeon, Jinmo;Jeon, Taewan;Shin, Sun Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.574-582
    • /
    • 2012
  • This study presents the concentrations of the polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by United States Environmental Protection Agency (US EPA), in 98 sludges from 54 industrial wastewater treatment facilities of South Korea. The mean concentrations of ${\Sigma}_{16}PAHs$ were ranged from 32.5 ${\mu}g/kg-dw$ to 1189.3 ${\mu}g/kg-dw$ by industries, and the highest content was found in the petrochemical industry, followed by chemical, clothing manufacturing and dying, pulp and papermaking, secondary wastewater treatment, and food/beverage producing industries. Comparisons to the EU and Danish standards of ${\Sigma}_{16}PAHs$ in sewage sludge for land application showed only two samples (one from petrochemical, and the other from chemical industry) exceeded the limits. ANOVA test with PAH concentrations as variables revealed no statistically significant influences by industrial types and sampling time (i.e., seasonal variations). Pearson correlations between individual PAHs showed strong relationships (r>0.7) among 4-ring PAHs. Concentrations of acenaphthylene, anthracene, fluoranthene, benzo(a)anthracene, benzo(f)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene presented strong correlations to ${\Sigma}_{16}PAHs$. Principal component analysis discriminated entire samples into three groups by two principal components (PC1 and PC2) with 70% of data variations, in which industrial types were not of importance, but a dominance of certain PAHs. Samples in group-I, which is high PC1 and low PC2, were characterized by a dominance of 2-ring PAHs, and in group-II, PC1 and PC2 showed a linear relation, was dominant 4-ring PAHs. Group-III with low PC1 and high PC2 includes 17 samples showing a noticeably high contribution of 3-ring PAHs to ${\Sigma}_{16}PAHs$. This study provides concentrations of PAHs in industrial sludges collected from a wide variety of sources (six industrial types) and two seasons of sampling events, and the comparison of ${\Sigma}_{16}PAHs$ with other studies are also discussed.

Spatial and Temporal Variations of Water Quality in an Urban Miho Stream and Some Influences of the Tributaries on the Water Quality (청주지역의 도심하천인 미호천에서 시공간적 수질변이 특성 및 유입지천의 영향)

  • Kim, Ji-Il;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.433-445
    • /
    • 2014
  • The objective of study was to analyze seasonal and inter-annual patterns of water chemistry of Miho Stream watershed during 2004 - 2007 along with some influences of tributaries and summer monsoon on the stream water quality. For the study, eight physico-chemical parameters such as nitrogen, phosphorus, BOD, COD and chlorophyll-a (CHL) etc. were analyzed in relation to spatial and temporal variability of seven sampling sites of the mainstream and some tributaries in the watershed. In the upstream reach, Mean of BOD, COD and TP averaged 3.2 mg/L, 6.5 mg/L and $186{\mu}g/L$, respectively, indicating an eutrophic conditions as a III-rank in the stream water quality criteria from the Ministry of Environment, Korea(MEK). The eutrophic water was due to a combined effect of Chiljang tributary with high nutrients ($TP=844{\mu}g/L$, TN=8.087 mg/L) and the point sources from some wastewater treatment plants. In the meantime, BOD, TN, and TP in the downstream reach were about > 1.2-1.5 folds than the values of the midstream reaches. This was mainly attributed to effluents of nutrient rich-water (mean TN: 11.980 mg/L) from two tributaries of Musim Stream and Suknam Stream, which is directly influenced by nearby wastewater disposal plants. Seasonal analysis of water chemistry showed that summer monsoon rainfall was one of the important factors influencing the water quality, and water quality had a large spatial heterogeneity during the rainfall period. In the premonsoon, BOD in the downstream averaged $6.0{\pm}2.47mg/L$, which was 1.4-fold greater than the mean of upstream reach. Mean of CHL-a as an indicator of primary productivity in the water body, was > 2.2 - 2.9 fold in the downstream than in the upstream, and this was a result of the high phosphorus loading from the watershed. Overall, our data suggest that some nutrient controls in point-source tributary streams are required for efficient water quality management of Miho Stream.

Analytical Evaluation of Influent Depending on the Occurrence of Rainfall by Case Study of Wastewater Treatment Facility (하수처리시설 사례 별 강우발생 유무에 따른 유입수 분석 평가)

  • Choi, Langkyu;Chung, Jin Do
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.35-49
    • /
    • 2019
  • Currently in 2018, Korea has over 600 operating sewage disposal facilities. The law requires a sewage treatment plant to treat 500 tons or more of water per day, and a small-decentralized sewage treatment facility in a community to treat 50 tons or more to less than 500 tons of water per day. However, most facilities fulfill neither the quantity nor the quality requirements from the original design for such reasons as inflow of rainwater and ground water due to deterioration of pipelines and unauthorized input of wastewater in the pipelines. The research has selected 2 representative cases among the technical diagnosif sewage pipelines in many regions within the country to use it as the baseline of: hourly flowrate and BOD water quality analysis in both clear and rainy days, proper plant operation through inflow rate and ratio calculation, and diagnostic evaluation for deterioration of the pipelines and their accessary structures. This also suggests facilities that treats 500 tons or more of inflow per day to sample and analyze the water hourly for 24 hours once a week in both clear weather and rainy weather considering the influence of rainfall on a regular basis.

Comparative Analysis of QUAL2E, QUAL2K and CAP Steady State Water Quality Modeling Results in Downstream Areas of the Geum River, Korea (QUAL2E, QUAL2K 및 CAP 모델을 이용한 금강 하류 하천구간 정상상태 수질모델링 결과 비교 분석)

  • Seo, Dongil;Yun, Jong Uk;Lee, Jae Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.121-129
    • /
    • 2008
  • Major factors affecting water quality in rivers are transportation, input of pollutant loads and kinetic transformation of pollutants. Government level decision makings on water quality management are based on steady state water quality modeling. However, it is more than often that such a steady state assumption is far from real situations in rivers. Therefore, it is unavoidable to have modeling errors in water quality modeling especially for steady state modeling for longer period of time. Authors attempted to identify sources of errors in results of steady state models and thus tried to find out ways to minimize those errors. Three water quality models, QUAL2E (Brown et al., 1983), QUAL2K (Chapra et al., 2006) and CAP (Seo and Lee, 2000) were applied to the lower stream of the Geum River. $BOD_5$ and COD tend to underestimate observed data while TN and TP showed relatively smaller errors. QUAL2E model provided best calibration results for BOD5 and TP and QUAL2K model showed best calibration results for TN. Since these errors are only relative values, it was difficult to conclude which model is better performing in certain situations. The most probable reasons for errors in water quality modeling are; 1) inappropriate consideration on flow characteristics, 2) lack of information on incoming pollutant load and 3) inappropriate location of sampling for water quality analysis.

Determination of the Origin of Particulate Organic Matter at the Estuary of Youngsan River using Stable Isotope Ratios (${\delta}^{13}C$, ${\delta}^{15}N$) (탄소 및 질소 안정동위원소 비를 이용한 영산강하구역 유기물 기원 추정 연구)

  • Lee, Yeon-Jung;Jeong, Byung-Kwan;Shin, Yong-Sik;Kim, Sung-Hwan;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.175-184
    • /
    • 2013
  • Organic carbon and total nitrogen stable isotope ratios of suspended materials were determined at 3 stations (from Mongtan Bridge to Youngsan river estuary barrage) (n=6, each) from November 2008 to August 2009, in order to understand the origin of particulate organic matter at the Estuary of Youngsan River. Allochthonous organic matter, ammonia-N and silicate were increased after heavy rain (in August). Carbon isotope ratios were significantly different between stations in November and August, and it was possible to determine the origin of organic matter. The heavier nitrogen isotope ratios, as well as higher phosphate concentrations, were found in November than other sampling times. Livestock wastewater and farmland input was likely the main causes of these high values. In addition, YS3 station, the nearest site to estuary barrage, appears to be affected by a substantial amount of livestock wastewater and farmland input, considering that nitrogen isotope ratios were heavier than those at the upper sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the determination of organic matter origin in aquatic environments.

Diagnosis of Submerged Fixed Bioreactor using Radioisotope Tracer (방사성동위원소 추적자를 이용한 침적형 고정 미생물 반응조 진단)

  • Jung, Sunghee;Jin, Joonha;Lee, Myunjoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1149-1158
    • /
    • 2000
  • A radioisotope tracer experiment was carried out in the submerged fixed bioreactor of a dye wastewater treatment facility to evaluate the flow behaviors in the 6 compartments of the reactor and to find any possible factors which may affect to the efficiency of the process. Approximately 20mCi of $^{131}I$ was injected into the system as a tracer and 8 radiation detectors were placed in the 6 compartments and at the inlet and the outlet of the system to measure the change of the tracer concentration with time. Using the Perfect Mixers in Series Model the measured data were analyzed to calculate the mean residence time and the characteristic parameters of the flow in the system. The mean residence time of the system was calculated as 17 hours which is 76% of the designed MRT(22.3hr). Among the 6 compartments, the first compartment doesn't show the characteristic of perfect mixer, whereas, the other 5 compartments are working as perfect mixers. The output response of the first compartment is fit well with the simulated output of a model which consists of a perfect mixer with an exchange volume. It indicates that a quarter of the tank volume is working as a dead volume or an exchange volume. From the measured residence time distributions in each compartment, the appropriate sampling times after the change of operational condition of the electron beam accelerator were evaluated.

  • PDF

The Spatial Distribution of Harmful Chemical Substance in Sediment Around Busan Southern Port (부산 남항 해저퇴적물 중 유기오염물질 분포 특성에 관한 연구)

  • Min, Byeong-kyu;Lee, Jong-Hyuk;Ju, Mijo;Cho, Chonrae;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.206-218
    • /
    • 2020
  • Located mostly inside the megacity of Busan, the Busan Southern Port is a multifunctional port with various nearby industry activities, including a joint fish market, ship repair facilities, and fishing boat facilities. If toxic chemicals generated by the industrial activities continue to flow into and accumulate in the sediment of the port, they can affect aquatic ecosystems and humans. Therefore, in this study, distribution levels and potential influent sources of organic pollutants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and butyltin compounds (BTs), in the sediment were investigated. The sediment samples were collected from eight sampling sites in November 2013 (first phase) and November 2014 (second phase). The mean concentrations of PAHs, PCBs, and BTs in the first and second sampling phages were 4174.0 ng/g-dry wt. and 1919.0 ng/g-dry wt., 166.3 ng/g-dry wt. and 21 ng/g-dry wt., and 50.9 ng/g-dry wt. and 30.8 ng/g-dry wt., respectively. The concentrations of the organic pollutants detected in the seabed sediments were lower in the second phase than in the first phase. In this study, the inflow sources of PAHs, PCBs, and BTs were found to be combustion, land, and municipal sewage or industrial wastewater, respectively.

Pollutants Characteristics of Surface Runoff from the Industrial Complex (산업공단에서의 지표유출수 오염물질 특성)

  • Kim, Youn-Kwon;Shin, Eung-Bai;Lee, Doo-Jin;Pae, Yo-sop;Yoon, Hyun-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.689-698
    • /
    • 2000
  • The quality of stormwater runoff has been a major concern in water quality preservation. Characteristics of heavy metals and conventional pollutants in surface runoff from industrial complex, during the first flush, were not completely understood, Generally, separated sewer system is known for their water quality with untreated wastewater during storm events. In this study, the quality and characteristics of surface runoff from the industrial complex were investigated. The target area in the industrial complex catchment was divided 4 sub-areas, and the quality of stormwater runoff from the selected drainage areas was investigated using a grab sampling method. The petro-chemical industry and the junkyard discharged relatively high concentration of conventional pollutants, such as BOD, COD, SS, and TN through the first flush runoff samples. On the other hand, a higher level of heavy metals was found in the first flush runoff from the metal-mechanical industry and the scrap storage yard. For metals, Fe, Zn and Cu were the most prevalent species found in the first flush runoff from all sites for every surface runoff samples, while Pb, As, Cd, Cr and Ni were the least prevalent species and Hg was not found in any sample at any site. These results suggest that the nature of pollutants in surface runoff from the industrial complex was related to the type of industry, and the concentration of pollutants was determinated by the degree of exposed pollutant sources and the characteristic of rainfall events at the sites.

  • PDF

Monitoring of Perfluorinated Compounds (PFCs) in the Yeongsan River Water System (영산강 수계에서 과불화 화합물의 모니터링)

  • Kwon, Bum Gun;Lim, Chae-Sung;Lim, Hye-Jung;Na, Suk-Hyun;Kwon, Joongkeun;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.303-311
    • /
    • 2015
  • To determine the concentrations of selected 10 perfluorinated compounds (PFCs), a field study was conducted in the water body of Yeongsan River Water System. Raw water samples were collected in the spring and the fall, respectively, which included 18 sampling sites. Collected samples were equally mixed and then served as an analytical sample. The concentration of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) were in range of 20.80-92.0 ng/L and ND-28.40 ng/L respectively. Perfluorononanoate (PFNA) and perfluorohexanesulfonate (PFHxS) were ranged from ND to 42.20 ng/L and from ND to 11.47 ng/L. The detection frequencies of other PFCs selected in this study were very sparse at very low concentrations, except for PFOS, PFOA, PFNA and PFHxS. PFOS was higher detection frequency and concentration in both spring and fall, PFOA and PFNA were in spring, and PFHxS was in fall. As a result, the observed concentrations of PFCs in the downtown water area of Gwangju, located in the wastewater treatment plants, were relatively higher than other sampling points.