DOI QR코드

DOI QR Code

Determination of the Origin of Particulate Organic Matter at the Estuary of Youngsan River using Stable Isotope Ratios (${\delta}^{13}C$, ${\delta}^{15}N$)

탄소 및 질소 안정동위원소 비를 이용한 영산강하구역 유기물 기원 추정 연구

  • Lee, Yeon-Jung (Department of Marine Sciences and Convergence Technology, Hanyang University) ;
  • Jeong, Byung-Kwan (Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University) ;
  • Shin, Yong-Sik (Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University) ;
  • Kim, Sung-Hwan (Department of Chemistry, Kyungpook National University) ;
  • Shin, Kyung-Hoon (Department of Marine Sciences and Convergence Technology, Hanyang University)
  • 이연정 (한양대학교 해양융합과학과) ;
  • 정병관 (목포해양대학교 환경.생명공학과) ;
  • 신용식 (목포해양대학교 환경.생명공학과) ;
  • 김성환 (경북대학교 화학과) ;
  • 신경훈 (한양대학교 해양융합과학과)
  • Received : 2013.01.28
  • Accepted : 2013.04.15
  • Published : 2013.06.30

Abstract

Organic carbon and total nitrogen stable isotope ratios of suspended materials were determined at 3 stations (from Mongtan Bridge to Youngsan river estuary barrage) (n=6, each) from November 2008 to August 2009, in order to understand the origin of particulate organic matter at the Estuary of Youngsan River. Allochthonous organic matter, ammonia-N and silicate were increased after heavy rain (in August). Carbon isotope ratios were significantly different between stations in November and August, and it was possible to determine the origin of organic matter. The heavier nitrogen isotope ratios, as well as higher phosphate concentrations, were found in November than other sampling times. Livestock wastewater and farmland input was likely the main causes of these high values. In addition, YS3 station, the nearest site to estuary barrage, appears to be affected by a substantial amount of livestock wastewater and farmland input, considering that nitrogen isotope ratios were heavier than those at the upper sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the determination of organic matter origin in aquatic environments.

본 연구는 영산강하구역 입자물질 유입원의 시 공간적인 변화를 추정해 보고자 몽탄대교에서 영산강 하구둑에 이르는 영산강하구역 세 정점에서 연 6회에 걸쳐 수 층 부유 물질의 탄소 및 질소 안정동위원소 비를 비교하였다. 모든 정점에서 8월에 강우를 통한 외부기원 유기물의 유입이 증가하였으며, 이 때 암모니아성 질소 및 규산염의 유입 역시 함께 증가하였다. 탄소 안정동위원소 비 측정 결과 11월과 8월에 정점 별 유기물의 기원이 크게 차이 났으며, 안정동위원소 비 값을 이용하여 주요 유입원 추정이 가능하였다. 11월에 모든 정점에서 질소 안정동위원소 비가 무거운 값을 보였고, 인산염의 농도가 가장 높게 나타났는데 이는 축산폐수 및 농경지를 통한 유입이 영향을 준 것으로 판단된다. 또한 다른 정점에 비해 영산강 하구둑에서 모든 조사 기간 동안 비교적 높은 질소 안정동위원소 비를 보였으며, 이를 통해 축산폐수 및 농경지를 통한 유기물 유입이 다른 정점에 비해 높을 것으로 추정된다. 본 연구 결과를 통해 안정동위원소 비 분석은 입자성유기물의 기원을 추정하는데 유용한 방법임을 확인할 수 있었다.

Keywords

References

  1. Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, C.M. Duarte, P. Kortelainen, J.A. Downing, J.J. Middelburg and J. Melack. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171-184.
  2. Deines, P. 1980. The isotope composition of reduced organic carbon, p. 329-406. In: Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment, A (Fritz, P. and Fontes, J. Ch., eds.). Elsevier, Amsterdam, Oxford, New York.
  3. Di Lascio, A., L. Rossi, P. Carlino, E. Calizza, D. Rossi and M.L. Costantini. 2013. Stable isotope variation in macroinvertebrates indicates anthropogenic disturbance along an urban stretch of the river Tiber (Rome, Italy). Ecological Indicators 28: 107-114. https://doi.org/10.1016/j.ecolind.2012.04.006
  4. Ehleringer, J.R. 1989. Carbon isotope ratios and physiological processes in aridland plants. Stable isotopes in ecological research. Ecological studies series. Springer-Verlag, New York. pp. 41-54.
  5. Eppley, R.W., W.G. Harrison, S.W. Chisholm and E. Stuart. 1977. Particulate organic matter in surface waters off California and its relation to photosynthesis. Journal of Marine Research 35: 671-696.
  6. France, R.L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress series 124: 307-321. https://doi.org/10.3354/meps124307
  7. Fry, B. 1991. Stable isotope diagrams of freshwater foodwebs. Ecology 72: 2293-2297. https://doi.org/10.2307/1941580
  8. Gal, J.K., M.S. Kim, Y.J. Lee, J. Seo and K.H. Shin. 2012. Foodweb of aquatic ecosystem within the Tamjin River through the determination of carbon and nitrogen isotope ratios. Korean Journal of Limnological Society 45(2): 242-251.
  9. Guo, Q., H. Strauss, T.B. Chen, G. Zhu, J. Yang, J. Yang, M. Lei, X. Zhou, M. Peters, Y. Xie, H. Zhang, R. Wei and C. Wang. 2013. Tracing the source of Beijing soil organic carbon: A carbon isotope approach. Environmental Pollution 176: 208-214. https://doi.org/10.1016/j.envpol.2013.01.035
  10. Hahn, C., V. Prasuhn, C. Stamm and R. Schulin. 2012. Phosphorus losses in runoff from manured grassland of different soil P status at two rainfall intensities. Agriculture, Ecosystems and Environment 153: 65-74. https://doi.org/10.1016/j.agee.2012.03.009
  11. Hebert, C.E. and L.I. Wassenaar. 2001. Stable nitrogen isotopes in waterfowl feathers reflect agricultural land use in weastern Canada. Environmental Science and Technology 35: 3482-3487. https://doi.org/10.1021/es001970p
  12. Horne, A.J. and C.R. Goldman. 2001. Limnology, 2nd Edition, McFraw-Hill, New York, NY. pp. 113-171.
  13. Kaiser, D., D. Unger, G. Qiu, H. Zhou and H. Gan. 2013. Natural and human influences on nutrient transport through a small subtropical Chinese estuary. Science of the Total Environment 450-451: 92-107. https://doi.org/10.1016/j.scitotenv.2013.01.096
  14. Karlsson, E.S., A. Charkin, O. Dudarev, I. Semiletov, J.E. Vonk, L. Sanchez-Garcia, A. Andersson and O. Gustafsson. 2011. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea. Biogeosciences 8: 1865-1879. https://doi.org/10.5194/bg-8-1865-2011
  15. Kendall, C. 1998. In Isotope Tracers in Catchment Hydrology. Elsevier: New York, NY. pp. 519-576.
  16. Kim, K.S. and N.I. Lee. 2003. Estimation of pollution loads flowing into Mokpo harbor -centering on pollution loads from land in dry case-. Journal of the Korean Society for Marine Environmental Engineering 6(1): 11-20.
  17. Lee, Y.J., J.O. Min, Y.S. Shin, S.H. Kim and K.H. Shin. 2011. Temporal and spatial variations of primary productivity in estuary of Youngsan River and Mokpo coastal areas. Korean Journal of Limnological Society 44(4): 327-336.
  18. Ludwig, W., J.L. Probst and S. Kempe. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10: 23-41. https://doi.org/10.1029/95GB02925
  19. Middelburg, J.J. and J. Nieuwenhuize. 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chemistry 60: 217-225. https://doi.org/10.1016/S0304-4203(97)00104-7
  20. National institute of environmental research, Yeongsan river environment research center. 2007. A feasibility study of water quality improvement in the Yeonsan Reservoir.
  21. Parsons, T.R., Y. Maita and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York, pp. 22-25.
  22. Peterson, B.J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293-320. https://doi.org/10.1146/annurev.es.18.110187.001453
  23. Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  24. Radajewski, S., P. Ineson, N.R. Parekh and J.C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403(6770): 646-649. https://doi.org/10.1038/35001054
  25. Ryu, I.K. and C.Y. Lee. 2000. A study on phosphorus loading model for eutrophication response in the Yongsan Lake. Korean Journal of Environmental Health Society 26(4): 97-104.
  26. Schwartz, D., A. Mariotti, R. Lanfranchi and B. Guillet. 1986. 13C/12C ratios of soil organic matter as indicators of vegetation changes in the Congo. Geoderma 39: 97-103. https://doi.org/10.1016/0016-7061(86)90069-8
  27. Shin, W.J. 2010. Hydrogeochemical processes and isotope characteristics of the major rivers in South Korea. Thesis (doctoral).
  28. Sugimoto, R., A. Kasai, K. Fujita, K. Sakauchi and T. Mizuno. 2011. Assessment of nitrogen loading from the Koso-Sansen Rivers into Ise Bay using stable isotopes. Journal of Oceanography 67(2): 231-240. https://doi.org/10.1007/s10872-011-0022-7
  29. Thornton, S.F. and J. McManus. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay estuary, Scotland. Estuarine Coastal and Shelf Science 38: 219-233. https://doi.org/10.1006/ecss.1994.1015
  30. Yang, H.M. 2001. Database and user interface for pollutant source and load management of Yeungsan estuarine lake watershed using GIS. Journal of the Korean Institute of Landscape Architecture 28(6): 114-126.