• Title/Summary/Keyword: wastewater flow

검색결과 673건 처리시간 0.026초

생흡착을 이용한 하수의 유기물, 질소, 인제거에 관한 연구 (A Study on the Biosorption Process for Organic and Nutrient Removal from the Wastewater)

  • 김현갑;박주석;정형근
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.470-479
    • /
    • 2004
  • The experimental conditions and relationships between parameters such as organic matter, aeration volume, aeration time, and precipitation time for the effective treatment of domestic wastewater were investigated. With the batch systems, the adsorption amount of unit microbe was measured with the change of MLSS concentration, precipitation time, and aeration amount. Theoretical adsorption amount of microbes was then numerically formulated by use of a SPSS multiple analysis as follows: $$Y=-0.0106(X_1)+0.07310(X_2)+42.705(X_3)+62.700$$ In this study, the amount of organisms to be removed in the range of MLSS concentration 2,000~4,500 mg/l were examined. In order to investigate the optimal condition of nitrification, the upper water in the biosorption stage was used as the initial experiment water. The results showed that the C/N ratio was 1.5 and the reaction time for the optimal nitrification was 1.5 hr. When the adsorption efficiency for microbe biosorption was 66%, the optimum denitrification efficiency was 83.3%. When the optimum parameters obtained from the batch experiment were applied to the lab-scale operation, the total retention time from the flow-in to flow-out was 10 hours and the removal efficiency was 93.8% for $COD_{cr}$ and 80.9% for TN. For the full-scale operation, the total retention time was 9.0 hours and the removal efficiency was 94.4% for BOD, 89.6% for $COD_{cr}$, 88.0% for TN, and 86.2% for TP.

발효된 1차 침전슬러지를 공급하여 간헐폭기조를 이용한 도시하수의 영양염류 처리 (Removal of Nutrients from Domestic Wastewater Using Intermittently Aerated Activated Sludge Systems Supplemented with Fermented Settled Sludge)

  • 원성연;이상일
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.18-23
    • /
    • 2004
  • In this research, a 2-stage intermittently aerated activated sludge system(IA) and intermittently aerated dynamic flow activated sludge system(DF) were investigated for the removal of nutrients in domestic wastewater. Wastewater was characterized by low C/N( organics/nitrogen) ratio. $COD_{cr}$, $BOD_s$, TKN and TP concentrations of domestic wastewater were 235, 47, 32 and 5.4 mg/L, respectively. Three sets of IA and one set of DF were operated. Three of four systems were added with fermented settled sludge taken from primary settling tank as an external electron donor and the other(IA) for control reactor was operated without addition of electron donor. All systems were operated at same sludge retention time of 20 days and hydraulic retention time of 12hrs. The supplemental electron donor was supplied into the anoxic mode. A higher denitrification rate was observed from the reactors with fermented settled sludge as an electron donor for denitrification compared to that of without addition of organic source. The result of this study indicates that the settled primary sludge, if the fermented at the acid stage, was an excellent electron donor for denitrification. 81 % of TN and 80% of TP were removed from the systems with the supplemental organic source added. However, the control reactor without addition of electron donor showed only 39% of TN and 43% of TP.

폐수특성 및 처리기술에 근거한 산업폐수 배출허용기준 설정체계 연구 (Establishment of Effluent Limitation based on Wastewater Characteristics and Treatment Technology)

  • 권오상;정진영;허태영;전항배;이연희;박상민
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.804-812
    • /
    • 2012
  • This study contemplated domestic and other country's effluent limitation standards and suggested a methodology to establish technology-base limitation value. Current effluent limitation regulates industrial point sources discriminated by discharge flow rate and by regional distinction in Korea. Discharged $BOD_5$ load from large-scale plants(flow rate above $2,000\;m^3/day)$ exceeds 50% of overall industrial wastewater, which present rationale for discrimination based on plant size. However, regional distinction and pollutant- specific regulation might be insufficient to meet practical effectiveness of wastewater management policy, due to the nearly same limitation. Water quality data and treatment methods were investigated in hospital industry. And their distribution of effluent $BOD_5$ concentrations was statistically analyzed to suggest limitation value. Effluent $BOD_5$ concentrations showed lognormal distribution and $95^{th}$ percentile was corresponded to 87.9 mg/L, which could be suggested as tentative effluent limitation in hospital industry. The $95^{th}$ percentile of log-transformed distribution showed similar value of 86.5 mg/L. This study demonstrated reasonable methodology for establishing effluent limitation reflecting wastewater characteristic and treatment technology in separately categorized industry.

강우시 도시지역 강우 유출수 오염부하 기원평가 (Evaluating pollution origins of runoff in urban area by stormwater)

  • 황병기
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.930-934
    • /
    • 2006
  • 홍제천 유역의 평창 배수분구를 대상으로 강우시 발생하수의 특성을 파악하기 위해 유량 및 수질 조사를 수행하였고, 강우유출수를 기저하수, 강우, 지붕유출수, 도로유출수, 관내 퇴적물 등 오염원별로 분석하여 기원별 초염기여도를 파악하였다. 강우시 발생초기의 오염물질의 농도는 초기세척현상에 의해 비강우시 농도의 3-10배 이상 높게 나타났으나, 강우 후반기에는 희석에 의해 비강우시 평균 농도 보다 오히려 낮은 농도를 보이는 것으로 나타났다. 오염부하의 오염원별 기여도 분석에서 관거 퇴적물에 의한 오염도가 전체 오염도에서 COD의 경우 54.6%를, SS은 73.3%를 차지하여, 가장 높은 기여도를 보여 관거 내 퇴적물의 준설과 세정을 통하여 상당량의 오염부하를 저감시킬 수 있는 것으로 나타났다.

  • PDF

다공성 석탄회 담체를 이용한 연속류식 고정 생물막 공정의 폐수 처리 특성 (Characteristics of Wastewater Treatment by the Continuous-Flow Fixed Biofilm Process Using Porous Fly Ash Carrier)

  • 류재춘;김영호;양현수;곽두원;유성준
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.200-205
    • /
    • 2005
  • 우리는 이전의 연구에서 석탄회를 이용하여 높은 미생물 담지능과 양이온에 대한 흡착능을 가지는 다공성 담체를 제조하였다. 본 연구는 다공성 석탄회 담체를 사용한 폐수 처리 생물막 공정 개발을 목적으로 실험실 규모의 연속류식 고정층 생물막 공정에 의한 돈사 폐수 처리 특성을 상용 미생물 담체 및 기존의 활성슬러지법과 동일 조건에서 비교 고찰하여 보았다. 실험 결과로서 제조한 석탄회 담체는 COD, TN, $NH_4{^+}-N$ 항목의 평균 제거율이 각각 80%, 77%, 65%로서 상용 담체 및 기존의 활성 슬러지 공정과 비교하여 높은 제거율을 나타내었다. 처리 후 미생물 담지량을 측정해 본 결과 상용 담체에 비해 높은 값을 나타내었으며, SEM 관찰 결과 석탄회 담체에 미생물 군집이 안정하게 형성되었음을 확인할 수 있었다.

Modelling of starch industry wastewater microfiltration parameters by neural network

  • Jokic, Aleksandar I.;Seres, Laslo L.;Milovic, Nemanja R.;Seres, Zita I.;Maravic, Nikola R.;Saranovic, Zana;Dokic, Ljubica P.
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.115-121
    • /
    • 2018
  • Artificial neural network (ANN) simulation is used to predict the dynamic change of permeate flux during wheat starch industry wastewater microfiltration with and without static turbulence promoter. The experimental program spans range of a sedimentation times from 2 to 4 h, for feed flow rates 50 to 150 L/h, at transmembrane pressures covering the range of $1{\times}10^5$ to $3{\times}10^5Pa$. ANN predictions of the wastewater microfiltration are compared with experimental results obtained using two different set of microfiltration experiments, with and without static turbulence promoter. The effects of the training algorithm, neural network architectures on the ANN performance are discussed. For the most of the cases considered, the ANN proved to be an adequate interpolation tool, where an excellent prediction was obtained using automated Bayesian regularization as training algorithm. The optimal ANN architecture was determined as 4-10-1 with hyperbolic tangent sigmoid transfer function transfer function for hidden and output layers. The error distributions of data revealed that experimental results are in very good agreement with computed ones with only 2% data points had absolute relative error greater than 20% for the microfiltration without static turbulence promoter whereas for the microfiltration with static turbulence promoter it was 1%. The contribution of filtration time variable to flux values provided by ANNs was determined in an important level at the range of 52-66% due to increased membrane fouling by the time. In the case of microfiltration with static turbulence promoter, relative importance of transmembrane pressure and feed flow rate increased for about 30%.

하이드로싸이클론을 이용한 해수 양식장 침전 고형물의 제거 효율 평가 (Removal Efficiency of Settleable Solids in Seawater Aquaculture Farm Wastewater)

  • 서준혁;김병기;박정환
    • 한국수산과학회지
    • /
    • 제56권1호
    • /
    • pp.116-123
    • /
    • 2023
  • Flow-through aquaculture systems generate large amounts of wastewater containing compounds such as solids that can settle near aquafarms and cause eutrophication. The settled solids are often reintroduced into flow-through systems, and aquatic animals can be affected by the solids and pathogens associated with these solids. For a sustainable aquaculture operation, adequate wastewater treatment is required. Hydrocyclones are one of the most promising technologies for the removal of solids in aquaculture wastewater. In this study, a model for performance prediction of hydrocyclones was investigated under three different operating conditions: water temperature, solids concentration, and water inlet velocity. The synthetic solids solution was prepared using settled solids from abalone aquaculture farms. The daily solids removal rates of the tested hydrocyclones ranged from 0.18 to 26.0 g solids-m-3-day-1, and removal efficiency ranged from 5.1 to 34.4%. The inlet water velocity had the greatest effect on solids removal and hydrocyclone efficiencies. The following multiregression model equation was derived from the daily solids removal rate (g solids-m-3-day-1) results for water temperature (T, ℃), solids concentration (SS, mg-L-1), and tangential inlet water velocity (TIV, m-sec-1): daily solids removal rate: f(z)=4.465+0.809TIV-0.375T+0.217SS (r2=0.976).

The Investigation of Treatment of Pistachio Processing Industrial Wastewater by Electrochemical Methods in Terms of Chemical Oxygen Demand and Total Phenol Removal

  • Alper Erdem Yilmaz;Baybars Ali Fil;Murat Tolga Yilmaz;Serkan Bayar;Zuhal Koksal
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.178-189
    • /
    • 2024
  • This work aims to investigate the efficiency of electrocoagulation (EC) of pistachio processing industrial wastewater (PPIW) using the continuous EC process. The tubular reactor made of stainless steel with an internal diameter of 60 mm was used as a cathode electrode. The effect of some parameters was examined on the removal of chemical oxygen demand (COD) and total phenols (TP) removal efficiency. The influences of the initial pH of wastewater (from 4 to 8), flow rate (from 25 to 125 mL/min), current density (from 7 to 21 mA/cm2), and supporting electrolyte type (NaCl, NaNO3, and Na2SO4), supporting electrolyte concentration (from 10 to 100 mg/L NaCl) on removal efficiency were investigated to determine the best experimental conditions. The examination of the physico-chemical parameters during the EC treatment showed that the best removal efficiency was obtained under conditions where the flow rate was 25 mL/min (20 min reaction time), the pH value was 5.2, and the current density was 21 mA/cm2 has set. Under these experimental conditions, COD and TP removal efficiency were found to be 75% and 97%, respectively, while energy consumption was 18.5 kW h/m3. The study results show that the EC can be applied to PPIW pre-treatment.

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제4권1호
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

유로변경식 부상여재 생물여과시스템을 이용한 하수고도처리 (Advanced Wastewater Treatment Using Biofilter System with Floating Media under Alternative Flow)

  • 류홍덕;이정훈;이상일
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.250-257
    • /
    • 2006
  • The objective of this study is to propose an alternative process for the small sewage treatment plants in rural communities. A biofilter has been used for biological wastewater treatment, which is becoming the alternative to the conventional activated sludge system. The proposed process used in this study, which is packed with floating media (i.e. expanded polystylene), has advantages of biofilter system and alternative flow system and they are incorporated into one process. Pilot and bench scale studies were performed using domestic wastewater. In the results of pilot plant study, it was observed that the stable effluent water quality was achieved and it met the present effluent criteria of suspended solid (SS), organic matters, T-N and T-P. In the study for determination of the cycle of backwashing, it was observed that the cycle of backwashing depended on BOD loading rates of influents. In the BOD loading rates of $0.5kg\;BOD/m^3{\cdot}day$ and $1.0kg\;BOD/m^3{\cdot}day$, the backwashing cycle of 28 hour and 16 hour were needed, respectively. The optimum backwashing time was 120~80 seconds at the media expansion rate of 50%. In the removal of SS, organic matters, T-N and T-P, SS removal was rather achieved by physical filtration than biological mechanism and the removal of organic matters except for SS, T-N and T-P were mainly rather achieved by biological mechanism than physical filtration. In bench-scale study, the effects of recirculation rate was investigated on removal of SS, TCOD, T-N and T-P. It was observed that the recirculation made removal efficiencies of SS, TCOD, T-N and T-P increased. Especially, in T-N removal, the increase of T-N removal efficiency of 40% was observed in the reicirculation rate of 1Q compared with 0Q.