• Title/Summary/Keyword: waste wood chip

Search Result 28, Processing Time 0.022 seconds

Physiochemical Properties and Plant Growth of The Hydroponic Substrate Using Waste Wood Chip (양액재배용 목재고형배지의 이화학적 특성과 작물생육 특성)

  • Kwon, Gu-Joong;Yang, Ji-Wook;Park, Hyo-Sub;Cho, Joon-Hyeong;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.400-409
    • /
    • 2015
  • This study examined the plant growth and development characteristics of leafy vegetables on the hydroponic substrates of waste wood chips, radiate pine chips, and mat type of waste wood chips. The bulk density of waste wood chips and radiata pine chips were $0.2g/cm^3$ and $0.16g/cm^3$, respectively. The moisture retention properties of both the radiata pine chips and waste wood chips were found to be similar but not better than those of the control rock wool and coco peat hydroponic substrates. The moisture retention property of the mat type was found to be the lowest. The chemical analysis of waste wood hydroponic substrates (w/v) was as follows.; The pH was 6.59, electric conductivity was 6.76 dS/m, total nitrogen content was 0.5%, C/N ratio was 113%, phosphorus was 10.1 ppm, potassium was 77 ppm, calcium was 531 ppm, magnesium was 49 ppm, and sodium was 96 ppm. The results from the radiata pine chemical analysis showed that it had a pH of 5.29, electric conductivity of 4.49 dS/m, total nitrogen content of 0.32%, C/N ratio of 180%, phosphorus of 6.4 ppm, potassium of 83 ppm, calcium of 97 ppm, magnesium of 29 ppm, and sodium of 59 ppm. Except for the plants grown in mat type, the developmental characteristics of the plants grown in rock wool and coco peat hydroponic substrates were similar. Based on the results of the experiment, waste wood resources may possibly be used as an organic solid medium in place of the existing rock wool and coco peat medium.

Production of Cellulase from Lignocellulosic Waste. (리그노셀룰로스계 폐기물을 이용한 Cellulase의 생산)

  • 강성우;이진석;김승욱
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.98-102
    • /
    • 2002
  • Lignocellulosic wastes available in abundance can be excellent substrates for the production of cellulase. Different types of substrates and various pretreatments were used to improve the production of cellulase. The steam-exploded wood chip gave the highest activities of FPase (0.84 IU/mL) and CMCase (6.5 IU/mL) in the shake-flask culture. In 30 L bioreactor the steam-exploded wood chip and residue after saccharification gave the FPase activity (0.72 IU/mL) and the CMCase activity (6.3 IU/mL), respectively, similar those obtained in lactose.

A Study on Physical and Chemical Properties of Vegetation Foundation for Rooftop Greening Using Wood Waste (폐목질 자원을 이용한 옥상녹화용 식생기반재의 물리 및 화학적 특성에 관한 연구)

  • Kim, Dae-Young;Kim, Mi Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • Many researchers have studied on rooftop greening that can be installed in abandoned spaces on a building roof. The most important issue in rooftop greening is the soil weight problem. The light greening materials are needed to solve this problem. Therefore, many alternative materials against the soil were investigated for rooftop greening. In this study, the waste wood chips and the waste paper slurry were evaluated as the lightweight vegetation foundation for rooftop greening. It also has a meaning for recycling of waste materials. The mixture ratio of waste wood chips to waste paper slurry for the board (the foundation of greening) was 60 to 40. The wet strength resin and the sizing agent were additionally added with different amount. After the forming of the board, physical and chemical properties were tested with the variation of wet strength resin and sizing agent. As the result of the test, the board with 15% of wet strength resin in the wet condition showed the highest strength. Futhermore, the moisture evaporation loss from the board surface with sizing agent was much lower than that from the board without sizing agent. Therefore, it was clear that the sizing agent was effective for water retention. The change of thickness in the wet condition was less than 1 mm, and it showed that the board is the predominant material on the dimensional stability. The average pH value of the board was ranged from 7.6 to 8.25.

New Utilization of Boards Manufactured with Wastewood and Charcoal (폐목재와 숯을 활용한 보드의 신용도 개발)

  • 최용순;권구중;황원중;한태형;권진헌;김남훈
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2000
  • Some physical characteristics as thickness swelling, heat conduction, and bending properties of composite hoards made of waste wood chip and charcoal were measured. Wood-charcoal composite boards of three types and cement board were prepared for this study as shown in Table 1, Keeping duration of strawberries in the boxes($25cm{\times}25cm{\times}25cm$) manufactured with the boards was also examined. Thickness swelling and bending properties(MOR and MOE) of board B and C were lower than those of board A. Among the wood-charcoal composite boards except cement board, there were no differences in heat conduction(mm/sec.). Strawberries in the box with board C were kept longer duration in fresh condition than that with cement board. From the results, it is suggested that wood-charcoal composite boards can be used for eco-material.

  • PDF

The Composting Techniques for On-site Recycling of Wood Waste (임목폐기물의 현장 재활용을 위한 퇴비화기술)

  • Hur, Young-Jin;Koh, Jeung-Hyun;Joo, Paik;Ahn, Tae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.4
    • /
    • pp.72-80
    • /
    • 2009
  • The main purpose of this study is as follows : Finding a solution for fresh wood chips to be used as an alternative growing-media through a study of the formation method of a compost base that is applicable on both construction site and composting factory to ferment fresh wood chips produced from construction site as well as a study on adjuvant or secondary materials. The result from the experiment plot using wood chips sized 50mm or less, manure and fertilizer mixed manure as a source of nitrogen to compost fresh wood chips has shown that the temperatures 9days and 3days after the beginning of the experiment reached to $49.0^{\circ}C$ and $40.4^{\circ}C$ respectively, the heating duration was 7days and 4days respectively, and the C/N ratio was 26.5 and 25.3, each satisfying the standard for composted manure (25.0~40.0). Also, the other result from another experiment plot using mixture of sandy soil and microorganism as an inoculation source of microorganism has shown that the temperature 10days after the beginning of the experiment reached to $67.6^{\circ}C$ and lasted 16days. The experiment plot using sandy soil has shown the highest figure of $5.3{\sim}108$ CFU/g in terms of number of microorganism. The result from the experiment plots for on-site composting of fresh wood chips have shown that the experiment plot that used sandy soil with fertilizer due to supply restriction of manure as a nitrogen source in construction site reached the high temperature of $54.7^{\circ}C$ after 3days of experiment beginning and maintained heating state for 17days and reached 30.6 of C/N ratio, satisfying the standard for composted manure.

A Study on the Characteristics of Pollutants in CFBC Boiler with Ammonium Sulfate Injection (황산암모늄 주입시 CFBC 보일러의 오염물질 특성 연구)

  • Lee, Chang-Yeol;Jeong, Bok-Hoa;Chung, Jin-Do
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.754-761
    • /
    • 2018
  • There is growing concern over the effects of global warning. In response, the power generation sector must consider a wider range of systems and fuels to generate power. One of the classes of solid fuels that is being increasingly developed is biomass. However, one of the most serious problems that biomass plants face is severe corrosion. To mitigate the problem, various approaches have been proposed in terms of additive utilization. This study is based on the results obtained during the co-combustion of wood chip and waste wood in a circulating fluidized bed boiler (CFBC boiler). The KCl concentration was reduced from 59.9 ppm to 3.9 ppm during the injection of ammonium sulfate, and NOx was reduced by 25.5 ppm from 30.6 ppm to 5.1 ppm. However, SOx increased by 110.2 ppm from 33.2 ppm to 143.4 ppm, and HCl increased by 71.5 ppm from 340.5 ppm to 412.0 ppm. Thus, we confirmed that the attitude of the superheater tube was reduced by 87 ~ 93%, and the injection of ammonium sulfate was effective in preventing high-temperature corrosion.

Comparison of N2O Emissions by Greenhouse Gas Emission Estimation Method (온실가스 배출량 산정 방법에 따른 N2O 배출량 비교)

  • Kang, Soyoung;Cho, Chang-Sang;Kim, Seungjin;Kang, Seongmin;Yoon, Hyeongi;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2015
  • In this study GC and PAS were used to calculate $N_2O$ concentration of exhaust gas from Wood Chip combustion system. Fuel supplied to the incinerator was collected and analyzed and then the analysis result was used to calculate $N_2O$ emissions. Tier 3 and Tier 4 Method were used to calculate the $N_2O$ emissions. Plant's Specific emission factor of $N_2O$ by Tier 3 Method was 0.35 kg/TJ, while default emission factor of Wood?Wood Waste proposed by 2006 IPCC G/L was 4 kg/TJ. So the $N_2O$ emission factor of this study was 3.65 kg/TJ lower compared to the IPCC G/L. The total emissions calculated by Plant's specific emission factor was 4.22 kg during the measuring period, but by Tier 4 Method it was 7.88 kg. This difference in emissions was caused by the difference of continuous measuring and intermittent sampling. It would be necessary to apply continuous measuring to calculate emissions of $Non-CO_2$ gas whose the density distribution is relatively high. However currently, according to the target management guideline of greenhouse gas and energy, the continuous measuring method to calculate greenhouse gas emission is applied only to $CO_2$. Therefore for reliable greenhouse gas emission calculation it would be necessary to apply continuous measuring to calculate $Non-CO_2$ gas emission.

Characteristics of the Vegetation Mat Prepared from Miscanthus Sinensis var. Purpurascens (거대억새(Miscanthus sinensis var. purpurascens)를 이용하여 제조된 식생기반재의 특성)

  • Kwon, Gu-Joong;Kim, Eun-Ji;Park, Hee-Jun;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • The characteristic of vegetation mat prepared from miscanthus, waste wood chip, perlite and pulp slurry was investigated. The pore rate was increased with amount of pulp slurry. The hydraulic conductivity decreased with the amount of miscanthus in the condition mixed with each other raw materials. With the miscanthus amount, the soil hardness was increased. The peel strength decreased with the mount of miscanthus amount in all case. Hydrogen ion concentration (pH) was the overall alkaline. The MOR of miscanthus based vegetation mat was decreased with the amount miscanthust.

Development of CO2 Emission Factor for Wood Chip Fuel and Reduction Effects (목질계 바이오매스 중 대체연료 우드칩의 온실가스(CO2) 배출계수 개발 및 저감 효과)

  • Lee, Seul-Ki;Kim, Seung-Jin;Cho, Chang-Sang;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.3 no.3
    • /
    • pp.211-224
    • /
    • 2012
  • Technology for energy recovery from waste can reduce the greenhouse gas emissions. So recently, there are several companies using RDF, RPF, WCF instead of using only coal fuel and it's part of the fuel on the increase. In this study, we developed Wood chip fuel $CO_2$ emission factor through fuel analysis. It's moisture content is 23%, received net calorific value is 2,845 kcal/kg, and received basis carbon is 34%. The result of emission factor is $105ton\;CO_2/TJ$, it's 5.9% lower than 2006 IPCC guideline default factor $112ton\;CO_2/TJ$. The gross GHG(Greenhouse gases) emissions of plant A is $178,767ton\;CO_2 eq./yr$, and Net GHG emissions is $40,359ton\;CO_2 eq./yr$. Therefore, the reduction of GHG emissions is $138,408ton\;CO_2/yr$ through using WCF, and I accounts for 77% of all GHG emissions.

The Setting and Strength Characteristics of Lightweight Mortar Using Wood Chips Treated with Water (수처리한 목편을 사용한 경량모르타르의 응결 및 강도특성)

  • Choi, Jae-Jin;Moon, Seung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.77-84
    • /
    • 2012
  • It is known that some components of wood obstruct the hydration of cement when wood is mixed with cement. In order to examine the effect of pretreatment of wood chips in hot water, this study conducted the experiments for the setting and compressive strength of mortar by sieving pine wood chips with a 2.4mm sieve, dipping them in waters of different temperatures, and then using them as a part of the fine aggregate. For the experiments, water-cement ratio of the mortar was 0.50 and the amount of the fine aggregate substituted by wood chips was set at 0%, 2%, 4%, 6%, 8%, and 10% of the mass of the fine aggregate. As a result of the test, it was found out that when wood chips were used to substitute fine aggregate for the production of mortar, more usage of wood chips postponed setting more, and the treatment of wood chips with water improved the problem of the delay in setting time. Especially, the final setting time of the mortar which used 2~6% of wood chips treated in $100^{\circ}C$ water for 30 minutes was almost the same as the final setting time of the mortar which used no wood chips. Also, the compressive strength of the mortar which used the wood chips treated with water was compared to that of the mortar which used the wood chips not treated with water. The result showed that the strength improved for age of 7 days and 28 days, while there was little change in strength for age of 3 days.

  • PDF