• Title/Summary/Keyword: waste water sludge

Search Result 262, Processing Time 0.029 seconds

Sphingopyxis granuli sp. nov., a $\beta$-Glucosidase-Producing Bacterium in the Family Sphingomonadaceae in $\alpha$-4 Subclass of the Proteobacteria

  • Kim Myung Kyum;Im Wan Taek;Ohta Hiroyuki;Lee Myung Jin;Lee Sung Taik
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.152-157
    • /
    • 2005
  • Strain Kw07$^T$, a Gram-negative, non-spore-forming, rod-shaped bacterium, was isolated from granules in an Up-flow Anaerobic Sludge Blanket (UASB) bioreactor used in the treatment of brewery waste­water. 16S rRNA gene sequence analysis revealed that strain Kw07T belongs to the a-4 subclass of the Proteobacteria, and the highest degree of sequence similarity was determined to be to Sphingopyxis macrogoltabida IFO 15033T (97.8%). Chemotaxonomic data revealed that strain Kw07T possesses a quinone system with the predominant compound Q-I0, the predominant fatty acid C,s:, OJ7c, and sphingolipids, aU of which corroborated our assignment ofthe strain to the Sphingopyxis genus. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that strain Kw07T represents a distinct species. Based on these data, Kw07T (= KCTC 12209T = NBRC 100800T) should be classified as the type strain for a novel Sphingopyxis species, for which the name Sphingopyxis granuli sp. novo has been proposed.

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem;Mbarki, Khadija;Gargouri, Kamel;Mechichi, Tahar;Hachicha, Ridha
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.670-679
    • /
    • 2019
  • Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.

Research on Improving Drying Technology For Sewage Waste Using Direct Flotation Using Heat Storage Media (축열메디아 활용 직접부상방식을 이용한 하수찌꺼기의 건조기술 향상에 관한 연구)

  • Sung-Il Noh;Ung-Yong Kim;Sung-Gyun Jo;Hyun-Gon Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.5-11
    • /
    • 2023
  • This study was conducted to improve energy efficiency and problems such as clumping and fouling in the glue zone that occur in the moisture content range of 40 to 60% when sewage dehydration residue is directly fed into the dryer. The temperature of the hot air is low at 270~300℃, and the paddle-type flotation method and dehydrated residue are applied to the circulated heat storage media to increase the contact area with the hot air, thereby reducing energy recovery and gas emissions. The water content of the dried residue is 2.7. ~7 .5%, the heat of evaporation of moisture was 608.0~690.6 kcal/kg·H2O, which confirmed an energy saving effect of about 8.8% compared to the heat of evaporation of moisture of 714.5 kcal/kg·H2O when no heat storage media was used.

Synthesizing Behavior of Calcium Chloroaluminate with using MSWI Fly Ash in the Different Sintering Conditions (생활폐기물(生活廢棄物) 소각(燒却) 비산(飛散)재의 소성(燒成) 조건(條件)에 따른 Calcium Chloroaluminate 합성(合成) 거동(擧動)에 관한 연구(硏究))

  • Yoo, Kwang-Suk;Lee, Seong-Ho;Hwang, Sun-Ho;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.68-74
    • /
    • 2010
  • The aim of this study is to investigate the behaviors of synthesis of Calcium Chloroaluminte($11CaO{\cdot}7Al_2O_3{\cdot}CaCl_2$) under the melting temperature of municipal solid waste incineration fly ash(MSWI fly ash); $900^{\circ}C-1300^{\circ}C$ of sintering temperature. A sludge generated from a water purification plant (SW) was also used to fill up $Al_2O_3$ source, which might be deficient in MSWI fly ash. MF and SW were mixed at mixing ratio of 10 to 7, which is the mole ratio of CaO to $Al_2O_3$ of calcium Chloroaluminte. Mixed samples were sintered in the opened sintering reactor and the closed sintering reactor, respectively. The results showed that calcium chloroaluminte was formed at $1,000^{\circ}C$ in both reactors, but the temperature of decomposition of calcium chloroaluminte depended upon sintering reactor type; an opened sintering reactor and a closed sintering reactor, owing to the vaporization velocity of Cl.

A Study on the RDF Manufacturing of Coffee grounds by using Pilot scale Oil-drying Equipment (Pilot scale 유중건조 장비를 이용한 커피찌꺼기의 고형연료화 연구)

  • Kwon, Ik-Beom;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.443-450
    • /
    • 2019
  • We studied to find the optimal manufacturing conditions of coffee grounds sludge RDF with oil drying method. We expanded the lab scale to pilot scale to compare the efficiency of the oil-drying equipment and The selection of the ratio of coffee grounds and oil, the setting temperature, and the temperature change and water content with time were measured. In order to analyze the characteristics of the research results, characteristics of solid fuels produced(Coffee grounds of oil-dried) by calorimeter, TGA, combustion equipment, and combustion gas measuring instrument were analyzed. As a result, the ratio of oil to coffee grounds was 4: 1, and when the setting temperature was set to $300^{\circ}C$, the water content reached 10wt.% or less within 20 minutes. ln addition, it showed high calorific value of 6,273kcal/kg. However, coffee grounds had a similar composition to wood and showed high luminance and produced a lot of CO in combustion gas. As a result, it is considered to be unsuitable for thermoelectric power plant and camping fuel, but the initial ignition speed is high and the heat generation is high, so it is considered that it can replace the fuels for current use.

Studies on Reaction Parameters for Composting of Paper Mill Sludge in a Small-Scale Reactor and Static Piles (제지슬럿지의 퇴비화를 위한 반응변수 연구)

  • Han, Shin Ho;Chung, Young Ryun;Cho, Cheon Hee;Kang, Moon Hee;Oh, Say Kyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.19-29
    • /
    • 1994
  • A large volume of paper mill sludge(PMS) is produced every day from paper industries after treatments of waste water and it costs too much to dispose of the sludge. Since PMS consists mostly of biodegradable organic matter, cellulose, it is desirable to recycle it by proper treatments such as composting. In this study, experiments were conducted using a small scale reactor(12l) to establish optimum conditions for efficient composting of PMS of which initial pH, C/N ratio, and moisture content were 7.1, 28~30, and 60~65%, respectively. No heavy metals such as mercury, cadmimum, and lead were not detected in the PMS. Various levels of forced aeration, 1 minute aeration per every 30, 60, 120, 240, and 480 minutes were applied and 1 minute aeration per 60 and 120 minutes found to be proper for composting of 8l PMS in this system. Relationship between $CO_2$ production and temperatures was positively correlated with r> 0.82 suggesting that the normal decomposition of PMS by microorganisms occurred. However, under the condition of aeration interval over than 240 minutes, a negative relationship between two parameters was found indicating the occurrence of abnormal(maybe anaerobic) degradation. The amount of added nitrogen also affected composting of PMS resulting in the increase of $CO_2$ production and temperature. Semi-field tests using 100kg PMS in a static pile sysem showed that PMS could be composted efficiently under optimal environmental conditions. The parameters determining efficiency of composting such as C/N ratio, aeration, moisture content, and pH need to be monitored.

  • PDF

Sensitivity of NOx Removal on Recycled TiO2 in Cement Mortar (재생 이산화티탄을 혼입한 모르타르의 NOx 저감률 민감도 분석)

  • Rhee, Inkyu;Kim, Jin-Hee;Kim, Jong-Ho;Roh, Young-Sook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.388-395
    • /
    • 2016
  • This paper explores the photocatalytic sensitivity of cement mortar incorporated with recycled $TiO_2$ from waste water sludge. Basically, $TiO_2$ cluster sank down slowly to the bottom of cement mortar specimen before setting and hardening process. This leads the mismatch of $TiO_2$ concentration on the top and the bottom faces of a specimen. This poorly dispersed $TiO_2$-cement mortar naturally exhibits poor NOx removal efficiency especially on the top of cementitious structure. In architectural engineering application such as building or housing structures, one can simply filp over from the bottom so that more $TiO_2$ concentrated surface can be placed outward into the air. However, in highway pavement case, this could not be applicable due to in-situ installation of concrete pavement. Hence, the dispersion of $TiO_2$ cluster inside the cementitous material is getting important issue onto road construction application. To elaborate this issue, according to our results, silica fume, high-ranged water reducer, viscosity agent, blast furnace slag were not enhanced much of dispersion characteristics of $TiO_2$ cluster. The combination of foaming agent and accelerator of hardening with viscosity agent and small grain size of fine aggregate may help the dispersion of $TiO_2$ inside cementitious materials. Even though the enhanced dispersion were applied to the specimen, NOx removal efficiency doest not change much for the top surface of the specimen. This concurrently affected by the presence of tiny air voids and the dispersion of $TiO_2$ in that these voids could easily adsorbed NOx gas with the aid of large surface area.

The Present and the Future of Biogas Purification and Upgrading Technologies (바이오가스 정제 및 고질화 기술 현황 및 전망)

  • Heo, Namhyo;Park, Jaekyu;Kim, Kidong;Oh, Youngsam;Cho, Byounghak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

Isolation of Cadmium-Tolerant Bacteria and Characterization of Cadmium Accumulation into the Bacteria Cell (카드뮴 내성균(耐性菌)의 분리(分離), 동정(同定)및 균체내(菌體內) 카드뮴 축적(蓄積) 특성(特性))

  • Cho, Ju-Sik;Han, Mun-Gyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 1992
  • Of the cadmium-tolerant 162 bacterial strains isolated from soils, river waters or active sludges of waste-water disposal plants in the Gyeongnam province a strain C1, which showed considerably higher growth rate in the agar plate containing 2000 ppm than any other strains isolated, was identified as a Pseudomonas putida or its similar strain when analyzed by taxonomical characteristics. Optimum pH and temperature for the growth of the P, putida were 7.0 and $30^{\circ}C$, respectively. This strain was resistant to antibiotics(ampicillin, chloramphenicol and streptomycin), and heavy metals(lithium, cupper, lead and zinc). This strain utilized salicylate, naphthalene or xylene as a sole carbon source. The rate of cadmium accumulation in P. putida cell was enhanced at low concentration of Cd in the growth media. The maximum cadmium absorption by this strain grown in 1 and l0ppm of Cd was respectively 78% and 60% 24 hrs after culture, but in 100 ppm Cd, 40% 48 hrs after culture. Addition of a non-ionic surfactant Triton X-100(0.1%) to the medium enhanced the accumulation of cadmium in the P. putida up to approximately 37%.

  • PDF

Nitrogen and Phosphorus Loss with Runoff and Leachate from Soils Applied with Different Agricultural By-product Composts (부산물 퇴비를 시용한 토양에서 표면유거와 용탈에 의한 질소와 인의 유실)

  • Park, Chol-Soo;Joo, Jin-Ho;Lee, Won-Jung;Yoo, Kyung-Yoal;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.307-312
    • /
    • 2005
  • Since alpine upland in Pyungchang-gun has been typically applied every two or three years with saprolite, agricultural by-products are inputted to raise soil properties. Therefore, the effect of saprolite application on water quality in runoff and leachate should be monitored. To investigate water quality in runoff and leachate with various treatments of agricultural by-product, lysimeter with dimension of $0.85m{\times}1.75m{\times}0.30m$ was installed in Kangwon National University. Control, mixed compost with cow, chicken and sawdust by-product (CCSC), chicken manure by-product compost (CC), food waste by-product compost (FWC), and beer sewage sludge by-product compost (BSSC) at the rate of $10Mg\;ha^{-1}$ were mixed with soil in 25 cm depth, and water qualities in runoff and leachate were monitored from Jun. 4, 2004 to Oct. 18, 2004. EC ($0.8-2.2dS\;m^{-1}$) and concentrations of total N ($25-75mg\;L^{-1}$) and total P ($0.12-0.43mg\;L^{-1}$) were highest in both runoff and leachate of CC treatment. EC values in CC and FWC treatments continuously increased during lysimeter experiment, while total N and total P concentrations continuously decreased. Average total N concentrations in runoff taken from CCSC, FWC and BSSC treatments were 41, 34 and $37mg\;L^{-1}$, and in leachate were 35, 28 and $34mg\;L^{-1}$, respectively. Average total P concentrations were not different with different treatments. EC values in leachate were higher than those in runoff, and total N concentrations in runoff were higher than those in leachate.