• Title/Summary/Keyword: waste water pollutants

Search Result 120, Processing Time 0.03 seconds

Study on the Emission Characteristics of Heavy metals in sewage sludge Incinerator (하수슬러지 소각시설의 중금속 배출특성에 관한 연구)

  • Park, Jung-Min;Lee, Sang-Bo;Kim, Min-Jung;Kim, Jin-Pil;Kim, Jong-Chooun;Lee, Suk-Jo;Lee, Sang-Hak
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.3
    • /
    • pp.28-36
    • /
    • 2009
  • We have closely examined the concentration change characteristics, emission amounts, and the material balance of hazardous air pollutants at both early and later stages of the prevention facilities. These results will be uses as the basic data when preparing for the regulatory and management plans for hazardous air pollutants. The results of the study on heavy metals illustrated that the content of heavy metals in sludge across five facilities were as follows: copper> zinc> chrome> nickel> cadmium> mercury. In terms of heavy metal content in swage sludge, the sludge in incinerating facilities other than the sludge in the D incinerating facility containing industrial water waste, was examined in order to satisfy the ocean contamination standard and fertilizer specifications. Most of the items were shown to have satisfied the emission tolerance standards in the latter part of the prevention facilities(The average elimination rate was over 90%). Therefore, it is concluded that swage sludge containing high-concentrate heavy metals needs to be incinerated rather than recycled as fertilizer.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.

A Study on Phosphorus Removal Process Using Steel Industry By-Products(Slag) at Dynamic condition (동적(動的) 상태(狀態)에서 산업(産業) 폐기물(廢棄物)을 이용(利用)한 인(燐) 제거(除去)에 관한 연구(硏究))

  • Lee, Seung-Hwan;Ahn, Kyu-Hong;Yoon, Jong-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 1996
  • Excessive phosphorus (P as orthophosphate) is one of the major pollutants in natural water that are responsible for algal blooms and eutrophication. P removal by slag is an attractive solution if the P sorption capacity of the slag is significant. To design an efficient land treatment facility, basic information on the behaviour of P in the media-water environment is required. In this study, detailed column experiments were conducted to study the P transport under dynamic condition, and mathematical models were developed to describe this process. The column experiments conducted with dust and cake waste products (slag) from BHP steel industry in Australia as adsorbing media indicated that they had higher sorption capacity of P than that of a sandy loam soil from North Sydney, Australia. P transport in the dust and cake columns exhibited characteristics S-shaped or curvilinear breakthrough curves. The simulated results from a dynamic physical non-equilibrium sorption model (DPNSM) and Freundlich isotherm constants satisfactorily matched the corresponding experimental breakthrough data. The mobility of P is restricted proportionally to the adsorbent's sorption capacity.

  • PDF

Elimination and Utilization of Pollutants - Part I Microbiological Clarification of Industrial Waste and Its Utilization as Feed Resources - (환경오염원(環境汚染源)의 제거(除去)와 그 이용성(利用性)에 관(關)한 연구(硏究) - 제(報I)1보(第). 미생물(微生物)에 의(依)한 산업폐수(産業廢水)의 정화(淨化) 및 사료자원개발(飼料資源開發)에 개(開)하여 -)

  • Lee, Ke-Ho;Lee, Kang-Heup;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 1980
  • Industrial wastes from pulp and food plants were treated with microorganisms to clarify organic waste-water and to produce cells as animal feed, and results were summarized as follows. (1) Waste-water from pulp, beer, bread yeast, and ethanol distillation plants contained $1.4{\sim}1.5%$ of total sugar, $0.25{\sim}0.35%$ nitrogen, and biological oxygen demand (BOD) was $400{\sim}25,000$, chemical oxygen demand (COD), $500{\sim}28,000$, and pH, $3.8{\sim}7.0$. The BOD and COD were highest in waste-water from ethanol distillation plants among others. (2) Bacterial and yeast counts were $4{\times}10^4-1{\times}10^9,\;2{\times}10^2-7{\times}10^4/ml$ in waste-water. (3) Bacteria grew better in pulp waste and yeasts in beer, bread yeast, and ethanol distillation waste. (4) Saccharomyces cerevisiae SAFM 1008 and Candida curvata SAFM 70 were the most suitable microorganisms for clarification of ethanol distillation waste. (5) When liquid and solid waste from ethanol distillation were treated with microbial cellulase, xylanase, and pectinase, solid waste was reduced by 36%, soluble waste was increased, and recuding sugar content was increased by 1.3 times which provided better medium than untreated waste for cultivation of yeasts. (6) Optimum growth conditions of the two species of yeast in ethanol distillation waste were pH 5.0, $30^{\circ}C$, and addition of 0.2% of urea, 0.1% of $KH_2PO_4$ and 0.02% of $MgSO_4$. (7) Minimum number of yeast for proper propagation was $1.8{\times}10^5/ml$. (8) C. curvata70 was better than cerevisae for the production of yeast cells from ethanol distillation waste treated with microbial enzymes. (9) S. cerevisiae produced 16 g of dried cell per 1,000ml of ethanol distillation waste and reduced BOD by 46%. C. curvata produced 17.6g of dried cell and reduced BOD by 52% at the same condition. (10) Yeast cells produced from the ethanol distillation waste contained 46-52% protein indicating suitability as a protein source for animal feed.

  • PDF

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Technology to Remove Trace Pollutants in Sewage Treatment Water Using Jellyfish Characteristics (해파리의 특성을 활용한 하수처리장 처리수 내 미량오염물질 제거 기술)

  • Hyeok Jin Park;Eun Jin Kim;Kyung Sil Choo;Joo Eun Shim;Min-Kyeong Yeo
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.54-60
    • /
    • 2024
  • The present study was aimed to evaluate the removal of the trace pollutants (heavy metals and microplastics) in the sewage treatment plant by using the jellyfish Extract at Immunity reaction (JEI) of Aurelia coerulea. The experiment was conducted on two different scales: the lab scale using a Jar-tester and the Pilot system scale equipped with two newly developed devices in the laboratory, the active tube connection mixed system and the concentration integrated separation device. Compared to anionic polymers currently used in the field, JEI showed similar or higher efficiency to remove the trace pollutants. When JEI was added to the effluent through the Pilot system, the combination of JEI and the trace pollutants was maximized through two mixing processes, and as a result, the removal rate of the trace pollutants was greatly improved. Based on these results, we propose the present technology as an alternative to removing trace pollutants that can reduce ecosystem risk and minimize the generation of inorganic waste, away from the existing method.

Up-cycling Product Development for Daily Household Supplies Utilizing Used Jeans (폐기된 청바지를 활용한 생활용품 디자인 연구)

  • Ahn, In-Sook;Kim, Ho-Kyung
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.1
    • /
    • pp.76-88
    • /
    • 2015
  • Excessive spending and the ever-changing fashion trends lead to an increase in material production to meet consumers' needs, which also in turn, increase the amount of industrial waste and many harmful pollutants. To address this problem, this study aimed to utilize discarded jeans' parts, reconstructing them into edgy and functional designs for everyday products. Six pairs of discarded jeans were collected and were used to create six types of functional products -three types of baskets, a bag, a slipper, and a key-holder. The benefits of up-cycling outweigh recycling because it not only increases the recycling rate, but also decreases the amount of energy and cost, thereby increasing the efficiency in recreating new innovative products. These proposed up-cycling ideas will serve as a great alternative for consumers to actively participate in reducing carbon emission, water usage, and waste to landfill by utilizing used clothing. This will guide how consumers can extend the life of their used clothing, utilize recyclable items more thoroughly, and keep used clothing out of landfills.

Removal Efficiency of the Pollutants from Piggery Wastes with Activated Carbon Treated with Metal and Their Pilot Scale Design

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2006
  • The treatment of piggery wastes was carried out at pilot scale using a multilayered metal-activated carbon system followed by carbon bed filtration. The physicochemical properties were obtained from treated samples with aqueous solutions containing metallic ions such as $Ag^+$, $Cu^{2+}$, $Na^+$, $K^+$ and $Mn^{2+}$, which main obsevations are subjected to inspect surface properties, color removal properties by Uv/Vis and EDX. Multilayered metal-activated carbons were contacted with waste water to investigation of the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. The removal results for the piggery waste using multilayered metal-activated carbon bed was achieved the satisfactory removal performance under permitted values of Ministry of Environment of Korea. The high efficiency of the multilayered metal-activated carbon bed was determined by the performance of this material for trapping, catalytic effect and adsorption of organic solid particles.

  • PDF

Development of Wastewater Treatment System by Energy-Saving Photocatalyst Using Combination of Solar Light, UV Lamp and $TiO_2$ (태양광/자외선/이산화티타늄($TiO_2$)을 이용한 에너지 절약형 광촉매 반응 처리시스템 개발)

  • 김현용;양원호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2003
  • Pollution purification using titanium dioxide (TiO$_2$) photocatalyst has attracted a great deal of attention with increasing number of relent environmental problems. Currently, the application of TiO$_2$ photocatalyst has been focused on purification and treatment of waste water. However. the use of conventional TiO$_2$ powder photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we herein studied the pilot-scale design to aid in optimization of the energy-saving process for more through development and reactor design by solar light/UV lamp/ TiO$_2$system. In this study, we manufactured the TiO$_2$sol by sol-gel method. According to analysis by XRD, SEM and TEM, characterization of TiO$_2$ sol were nano-size (5-6 nm) and anatase type. Inorganic binder (SiO$_2$) was added to TiO$_2$ lot to be coated for support strongly, and support of ceramic bead was used to lower separation rate that of glass bead The influences were studied of various experimental parameters such as TiO$_2$ quantity, pH, flow rate. additives, pollutants concentration, climate condition and reflection plate by means of reaction time of the main chararteristics of the obtained materials. In water treatment system, variable realtor as solar light/ or UV lamp according to climate condition such as sunny and cloudy days treated the phenol and E-coli(Escherichia coli) effectively.