• Title/Summary/Keyword: waste refractory

Search Result 35, Processing Time 0.026 seconds

Pretreatment of Waste-activated Sludge for Enhancement of Methane Production (메탄발효 효율향상을 위한 하.폐수 슬러지의 전처리 기술)

  • NamKung, Kyu-Cheol;Jeon, Che-Ok
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • Although different disposal routes of waste-activated sludge are possible, anaerobic digestion plays an important role for its abilities to further transform organic matter into methane. The potential of using methane as energy source has long been widely recognised and the present paper extensively reviews the principles of anaerobic digestion, the process parameters and hydrolysis. Hydrolysis is recognised as rate-limiting step in the complex digestion process. To accelerate the digestion and enhance the production of biogas, various pre-treatments can be used to improve the rate-limiting hydrolysis. These treatments include mechanical, thermal, chemical and biological interventions to the feedstock. All pre-treatments result in a lysis or disintegration of sludge cells, thus releasing and solubilizing intracellular material into the water phase and transforming refractory organic material into biodegradable species. The reader will finally be guided to extensive discussion for anaerobic digestion processes.

Computer Simulation for Smelting Tretment of Waste Casting Sand (폐주물사의 용융처리에 관한 Computer Simulation)

  • Chung, Won-Sub;Min, Dong-Jun;Kim, Yong-Ha
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.24-30
    • /
    • 1996
  • The computcr s~mulatiun model in vanaus s~nelllng process for melling waste cashhg sand was developed by using energy and malcrial balance concept. This modcl can prcdict the coal, flux and oxygen conaumptron and thc volume and temperature of off-gas The ~niljor critical varlablcs for smclting process can be crplained by using the analysis of energy and malc~ialb alance. Thc Innst lmportarlt variables lor smelting process were h i ~ hpo st-combust~anr atla, high heat transfer crficiency and refractory pratcclion lechnalogy. For saving encrg), in this smelting proccss, selection of caw marerials i.e coal, flus was important, cspacially ubi~go f low volatile coal was prufitahle.

  • PDF

Comparison of Spectroscopic Characteristics and Chemical Oxygen Demand Efficiencies for Dissolved Organic Matters from Diverse Sources (기원별 용존 유기물의 분광특성 및 COD 산화율 비교)

  • Jung, Ka-Young;Park, Min-Hye;Hur, Jin;Lee, Seungyoon;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.589-596
    • /
    • 2009
  • The spectroscopic characteristics and chemical oxygen demand (COD) oxidation efficiencies were investigated for dissolved organic matters (DOM) from diverse sources, which may indirectly affect the concentrations and the quality of DOM found in watersheds. The DOM investigated for this study showed a wide range of the percent distributions of refractory organic matter (R-OM) from 8 to 100%. Relatively high R-OM distributions were observed for the DOM with the source of head water, sediments, paddy soils, field soils, and treated sewage whereas the DOM from livestock waste, reed, weeds, algae, and attached algae exhibited lower R-OM percent distributions. The percent distribution of R-OM had positive correlations with specific UV absorbance (SUVA) and humidification indices (HIX) of DOM. The investigated DOM was classified into four different source groups (i.e., biota, vegetables, soils, sediments) by comparing the synchronous fluorescence spectra. The DOM group from biota source was characterized by a prominent presence of protein-like fluorescence (PLF) whereas fulvic-like fluorescence (FLF) was additionally observed for vegetable-source DOM. FLF became significant for the DOM from both soils and sediments although no PLF was found for soil-derived DOM. A range of COD oxidation efficiency was observed for the various DOM, ranging from 36 to 94% and from 65 to 125% for $COD_{Mn}$ and $COD_{Cr}$, respectively. The results indicate that $COD_{Cr}$ reflects the higher OM concentration than $COD_{Mn}$. However, 95% confidence intervals of the COD oxidation efficiencies were similar for the two types of COD, suggesting that $COD_{Cr}$ may not be the superior OM index to $COD_{Mn}$ in terms of the variability of the oxidation efficiency. No significant correlations were obtained between COD oxidation efficiencies and the spectroscopic characteristics of DOM for this study.

Organic Wastewater Treatment Using Modified Fenton's Oxidation (변형 펜턴산화법을 이용한 유기폐수의 처리)

  • Kim, Ji Yeon;Yoon, Tai Il;Park, Se Jin
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.49-61
    • /
    • 1999
  • Fenton's oxidation can improve the biodegradability of refractory organic wastewater by generating $OH{\cdot}$ which is one of the most reactive species. Fenton's reagent is used to treat a variety of industrial waste containing a range of toxic organic compounds. But this process cannot be economical because of high chemical cost of $H_2O_2$, ferrous ion solution and high sludge disposal cost. In this study, we proposed a modified Fenton's oxidation process which can reduce the reagent cost and obtain better removal efficiencies with less Fenton's reagents, and have a good potential of sludge recycling. In modified Fenton reaction, ferrous ion solution is adjusted to optimal pH with NaOH. Then it added to the sample and reacted to $H_2O_2$. For the experiment, synthetic wastewater made of phenol, which is one of the typical water pollutants, was used and the ionic strength of this wastewater was controlled by adding $NaHCO_3$. The effects of DO, ionic strength, and $H_2O_2$ dosing methods were investigated. As a result, modified Fenton's treatment efficiencies are better than conventional Fenton's reaction treating leachate and dyeing wastewater. And modified Fenton's treatment efficiencies combined to the sludge recycling for a half of Iron dosage are as good as the conventional Fenton's for a normal Iron dosage.

  • PDF

Investigation on Fire Resistance of Mortar Made of Powder Type Sericite (분말형 견운모를 혼입한 모르타르의 내화성능 연구)

  • Park, Ji-Yeon;Kim, So-I;Kim, Seong-Ha;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • Powder type sericite has been actively researched in the area of chemistry and mineralogy in terms of waste recycling. It is a material that can be obtained relatively inexpensively with a low thermal conductivity like general mica, so in order to improve the thermal conductivity of the mortar, powder type sericite was used in this work. Compressive strengths of mortar before and after high temperature exposure were compared and evaluated to determine the fire resistance of mortar with powder type sericite. According to the experimental results, it was found that the compressive strength decreased when powder type sericite was replaced with cement, but the decrease in compressive strength with the increasing amount of powder type sericite was insignificant. When powder type sericite was incorporated, the thermal conductivity decreased, and the residual strengths of the mortar specimens which were heat treated at 600℃, 900℃, and 1,200℃ were higher than that of plain mortar. From the comprehensive evaluation of the experimental results, it can be concluded that the powder type sericite has the potential to be used as a refractory material for cement composites.