• 제목/요약/키워드: waste material

검색결과 1,693건 처리시간 0.024초

폐타이어 혼입률에 따른 콘크리트 강도 변화에 관한 실험적 연구 (Strength Properties of Waste-tyre Recycling Concrete)

  • 손기상
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.76-80
    • /
    • 2003
  • There will be a big problem in disposing of waste tie coming from the cars. Because many of these have been thrown away to the field and environmentally polluted. New, We need to find out how to dispose or recycle these waste material. It is thought that recycling this material especially mixing with concrete will be a good idea. This study is focused how each material do its behavior due to the size of waste type particle and its amount into concrete material. 0.4mm-10mm range of particle has been applied to the material : Also, 1.0%, 1.5%, 2.0% range of tyre particle proportion has been applied to make cylinder molds. The concrete mold with waste-tyre particle has vibration-absorbing ability. It is found that 0.4 -0.6mm particle mixing concrete has been more solid organized. And this waste tyre material could be applied to the general concrete, it is found.

Utilization of PTE and LDPE Plastic Waste and Building Material Waste as Bricks

  • Intan, Syarifah Keumala;Santosa, Sandra
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.603-608
    • /
    • 2019
  • Plastic waste is becoming a problem in various countries because of the difficulty of natural decomposition. One type is PET plastic(Polyethylene Terephthalate), which is often used as a bottle for soft drink packaging, and LDPE(Low Density Polyethylene), which is also widely used as a food or beverage packaging material. The use of these two types of plastic continuously, without good recycling, will have a negative impact on the environment. Building material waste is also becoming a serious environmental problem. This study aims to provide a solution to the problem of the above plastic waste and building material waste by making them into a mixture to be used as bricks. Research is carried out by mixing both materials, namely plastic heated at a temperature of $180-220^{\circ}C$ and building material waste that had been crushed and sized to 30-40 mesh with homogeneous stirring. The ratios of PET and LDPE plastic to building material waste are 9 : 1, 8 : 2, 7 : 3, 6 : 4 and 5 : 5. After heating and printing, density, water absorption and compressive strength tests are carried out. Addition of PET and LDPE plastic can increase compressive strength, and reduce water absorption, porosity and density. A maximum compressive strength of 10.5 MPa is obtained at the ratio of 6 : 4.

폐촉매 및 재활용 중간생성물의 물리화학적 특성 평가 (Physicochemical Characteristics of Waste Catalyst and Their In-Process Products from Recycling)

  • 박준석;전병도;김정대
    • 한국환경보건학회지
    • /
    • 제37권2호
    • /
    • pp.150-158
    • /
    • 2011
  • This research was conducted to estimate the physicochemical characteristics of waste catalyst and its in-process product from recycling and to suggest fundamental data for religious systems such as quality standards. Mo and V contents were increased from the waste catalyst to calcinated material and oxidized material. In the results of a heavy metals leaching test, Pb was not detected in any catalyst, calcinated and oxidized materials. Cu was not detected in the catalyst. However, it was detected in ${\leq}$1.16 mg/l for calcinated material and in 1.34~13.73 mg/l for $MoO_3$ oxidezed material. Concentrations in recycling in-process products (calcinated and oxidized materials) were higher than those of waste catalyst. Oil content of catalyst waste ranged from 0.01-14.03 wt%. Oil contents of calcinated and oxidized materials were greatly decreased compared to the catalyst waste. Carbon and sulfur contents as chemical poisoning material of catalyst waste ranged from 0.33-76.08 wt% and 5.00-22.00 wt%, respectively. The carbon contents of calcinated and oxidized materials showed below 20 wt%. The sulfur content showed below 8wt% for calcinated material and below 0.22 wt% for oxidized material.

연직배수재료로 폐콘크리트 활용에 관한 기초연구 (Utilization of Waste Concrete as Vertical Drain Material)

  • 이용수;정하익;김우성;권용완
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

폐타이어와 폐유리 미분말을 소재로 한 무기질 탄성도막 방수공법에 관한 실험적 연구 (An Experimental Study on the Cement-Polymer Coatings Waterproofing Method Composed with Waste Tire Chip and Waste Glass powder)

  • 김영삼;양승도;이성일;김윤욱;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.17-22
    • /
    • 2002
  • This Waterproofing Material which mainly consisted of 2 components of waste tire chip powder and waste glass powder. This Study is abut development of waterproofing Material, There is not tried in domestic. The most Motive of this Study wishes to recycle resources and get the economic performance for waterproofing Material The result of this Study is as followings. (1) Dense waterproofing floor is formed between waste tire chip by Coupling Agent(the most effective method to encourage adhesive strength and raise cohesion of material by combination.) (2) Expected to bring effect to shorten construction period at spot application potentially space-time in moisture aspect. Also, shortening effect of construction period and spot work are considered to be gone efficiently selecting pre-mix construction method. (3) This development Waterproofing material has elasticity that nature side compatibility of cement ingredient and plastic Emulsion have when utilize and constructs waite resources (being waste tire chip and waste glass powdered).

  • PDF

폐비닐을 이용(利用)한 재생원료화(再生原料化) 기술(技術) (Feedstock Recycling Technologies using Waste Vinyls)

  • 정수현;나정걸;김상국;우희명;김영태
    • 자원리싸이클링
    • /
    • 제22권4호
    • /
    • pp.46-54
    • /
    • 2013
  • 국내에서 발생하는 폐플라스틱의 양은 폐비닐류를 포함하여 연간 500만톤에 이르며 이 가운데 재활용 선별장을 통하여 배출되는 폐비닐류의 양은 연간 100만톤 정도에 이르는 것으로 추정되고 있다. 재활용 선별장의 폐비닐류는 RPF(Refuse Plastic Fuel) 또는 재생원료로 전환되어 재활용이 이루어지고 있다. 본 연구에서는 재활용 선별장에서 발생하는 폐비닐을 열매체 가열공정에 의하여 용융처리하여 재생 폐비닐 원료로서 이용가능성을 인장강도를 통하여 분석하고 기존의 재생품과 비교함으로서 용융재생원료의 이용 가능성을 판단하였다. 상업용으로 사용하기 위해서는 폐비닐류를 이용한 재생원료의 인장강도는 100 $kgf/cm^2$ 정도가 적합함을 알 수 있었다.

인산칼슘이 함유된 재생시멘트의 방사성 폐기물 고화재 활용성 검토 (Analysis of Utilizing Recycled Cement Containing Calcium Phosphate as a Solidifying Material for Radioactive Waste Disposal)

  • 공동건;김지현;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.191-192
    • /
    • 2021
  • For the stable management of radioactive waste, it is necessary to secure a solidification treatment technology capable of immobilizing hazardous radioactive elements in a solid matrix. In this study, the feasibility of using recycled cement recovered from waste concrete as a solidifying material for radioactive waste was analyzed.

  • PDF

Upcycling strategies for waste electronic and electrical equipment based on material flow analysis

  • Yi, Sora;Lee, Hisun;Lee, Jeongmin;Kim, Woong
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.74-81
    • /
    • 2019
  • Upcycling generally refers to the conversion of waste materials to something useful or valuable and is a useful concept that can be applied not only to the waste design industry but also to waste recycling and resource circulation. Our study highlights upcycling as the key concept for improving the value of waste by redefining the concept as "the recycling of waste materials and discarded products in ways that enhance their value." Four upcycling strategies are linked to material flow analyses conducted on waste electronic and electrical equipment, specifically waste refrigerators and waste computers, to examine the technologies available for implementation and suggest guidelines for the promotion of upcycling. The amount of waste refrigerators collected by the formal sector was 121,642 tons/y and the informal sector, 63,823 tons/y. The current recycling ratio of waste refrigerators was estimated as 88.53%. A total of 7,585 tons/y of waste computers were collected by the formal sector and 3,807 tons/y by the informal sector after discharge. Meanwhile, the current recycling ratio of waste computers was estimated as 77.43%. We found that it is possible to introduce 28 upcycling technologies in the case of refrigerators, and 15 technologies are available to promote upcycling in the case of computers. By refining the broad concept of upcycling and looking at the stages of material flow, our approach presents universally applicable directions for incorporating upcycling in resource recovery and recirculation plans.

폐자동차(廢自動車) Tail Lamp의 재활용(再活用)을 위한 재질분리(材質分離) 기술개발(技術開發) (The Development of Material Separation Technique for Recycling of Waste Car Tail Lamp)

  • 전호석;박철현;백상호;박재구
    • 자원리싸이클링
    • /
    • 제15권6호
    • /
    • pp.25-32
    • /
    • 2006
  • 본 연구에서는 폐자동차의 재활용 향상을 위하여 전량 소각 및 매립에 의해 처리되고 있는 폐자동차 tail lamp를 해체공정에서 회수하고, 마찰하전형정전선별법을 적용하여 재질분리 연구를 수행하였다. 하전특성 연구결과 PMMA재질이 폐자동차 tail lamp의 재질분리에 효과적인 하전물질로 확인되어, PMMA재질을 사용한 cyclone 하전장치를 개발하였다. 본 연구에서 개발된 cyclone 하전장치를 이용한 마찰하전형정전선별 실험결과, 최적 실험조건에서 폐자동차 tail lamp로부터 PMMA 재질의 품위와 회수율이 각각 99.0%와 90.2%인 결과를 얻어, 폐자동차 tail lamp를 재활용 할 수 있는 재질분리 기술을 확립하였다.

Study on CO2 Emission Reduction Effects of Using Waste Cementitious Powder as an Alternative Raw Material

  • Park, Dong-Cheon;Kwon, Eun-Hee;Hwang, Jong-Uk;Ahn, Jae-Cheol
    • 한국건축시공학회지
    • /
    • 제14권2호
    • /
    • pp.187-194
    • /
    • 2014
  • With environmental regulations continuously being strengthened internationally the need to control environmental pollution and environmental load is emerging in Korea. The purpose of this study is to seek methods or using waste cementitious powder as an alternative raw material for limestone through the optimization of raw material and to quantitatively analyze the resulting reduction of $CO_2$ emission in order to contribute to solving the issue of waste, which is the biggest issue in relation to construction and global warming. The results of the study, show that waste cementitious powder can be used as an alternative raw material for limestone at OPC level, but it was also found that mixing fine aggregate cementitious powder into waste cementitious powder significantly affected the substitution rate for limestone with waste cementitious powder and the reduction of greenhouse gas. In particular, when fine aggregate cementitious powder was used at a rate of 0~20%, the substitution rate for limestone and the reduction in the rate of greenhouse gas emission was significantly reduced. It is thought that a technique to efficiently separate and discharge the fine aggregate cementitious powder mixed in waste cementitious powder needs to be developed in the future.