• Title/Summary/Keyword: waste landfill park

Search Result 133, Processing Time 0.034 seconds

A Study on Successional Direction of Robinia pseudoacacia for the Vegetation Restoration in Waste Landfill of Noeul Park (노을공원 쓰레기매립지 식생복원을 위한 아까시나무 천이방향 연구)

  • Wei, Si-Yang;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.3
    • /
    • pp.19-31
    • /
    • 2021
  • The waste landfill that has been used as a park through a stabilization project to provide green space to local residents. Vegetation restoration is necessary for the landfill park project, but it is difficult to restore vegetation due to various disturbances in the landfill. This study analyzed the successional dynamics and ecological characteristics of Robinia pseudoacacia communities from the slopes of Noeul Park by applying the 7-stage successional hypothesis. As a result of the study, there was almost no intermediate successional stage. There are only the early successional stage which Robinia pseudoacacia has an absolute dominance of 100% in the crown and middle layers, and the degeneration successional stage which formed by the introduction of Morus alba. This result showed that the succession of Robinia pseudoacacia communities were not able to proceed to the climax forest due to various disturbances in the waste landfill. Therefore, it was analyzed that it is necessary to induce the succession through intermediate steps such as Morus alba, since it is difficult to transition from Robinia pseudoacacia community to the native Quercus spp. community.

Suggestions for the Estimation of the Methane Emission from a Landfill Site

  • Lee, Kyungho;Jeon, Eunjeong;Lee, Youngmin;Park, Junghyun
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.69-73
    • /
    • 2020
  • Sudokwon landfill("Sudokwon" means regions of Seoul, Kyunggi and Incheon metropolitan cities in Korea), the world's largest sanitary landfill, has been systematically managing statistics on the incoming and dumping wastes and satisfactorily controlling pollutants including leachate and LFG. According to our long time experience of LFG field monitoring, the emission of GHG from landfill estimated by the IPCC Guideline showed much difference with our results. C&D waste has high concentration of sulfate compared to other wastes. Increased C&D waste of dumping waste had changed the COD/sulfate ratio in the landfill, which caused the increase of H2S gas and the decrease of CH4 gas. But the IPCC estimation method does not consider the effects of sulfate. In addition to that, the oxidation factor of the cover soil is set to the default values of 0.1 but the measured values by the field monitoring, are showing much higher than that, especially in the closed landfill.

Characteristics of Landfill Gas Generation by Separate Landfill of Construction Waste and Mixed Landfill with Household Waste (건설폐기물 분리매립 및 생활폐기물과의 혼합매립에 의한 매립가스 발생 특성)

  • Jong-Keun, Park;Seung-Kyu, Chun
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Landfill gas (LFG) generation characteristics in a construction waste landfill zone (block E) and mixed landfill zone (block A) were analyzed. During the period from October 2018 to April 2022, a total of 936×103 and 1,001×103 tons of waste were disposed in block E and block A, respectively. Out of this, 27.1% and 55.6% were biodegradable waste in block E and block A, respectively. The landfill masses of the two blocks were converted to be comparable. Then, the biodegradable waste and organic carbon were estimated by element analysis, biodegradable carbon by biochemical methane potential experiment (DC), and sulfate ion by acid decomposition. Results showed that biodegradable waste, organic carbon, biodegradable carbon, and sulfate ions in block A were 2.1, 1.6, 5.2, and 0.4 times greater than those in block E, respectively. The amount of LFG generated by block A was 4.8 times greater than that by block E. The average concentrations of methane (CH4) were 60.8% and 60.9% in block E and block A, respectively, which were unrelated to the nature of disposed waste. The average concentrations of hydrogen sulfide (H2S) were significantly high in block E (4,489 ppm) and block A (8,478 ppm). As the DC/SO42- of block E and block A were 0.35 and 4.56, respectively, increase in DC/SO42- caused increase in not only the total amount but also the concentration of H2S generated.

Information Management System of Solid Waste Landfill based on 3 Dimensional Method (3차원기법을 이용한 폐기물매립지 정보관리시스템 구축 연구)

  • Park, Jin-Kyu;Cho, Sung-Youn;Kim, Byung-Tae;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.39-48
    • /
    • 2016
  • An information management system for a solid waste landfill site was developed, in this study, to optimize the operation and management of solid waste landfill in real time in addition to provide the information of landfill status to the landfill operator, public official concerned and local residents. The landfill information management system is composed of two systems (Solid waste landfill history management system and landfill operation and performance management system). The solid waste landfill history management system based on automated RFID/LPR system allows landfill operators to provide information of waste collection vehicles and received waste. In addition, the system aids in the identification of 3-dimensional (3D) position for landfilled solid wastes. Using the landfill operation and performance management system based on 3D laser scanner delivers information about landfill volume, settlement, landfill density, and current landfill capacity to landfill operators in real time, resulting in optimum space utilization. Ultimately, this system would dramatically reduce exposure of landfill operators to hazardous materials and improve the productivity of landfill operations.

Treatability Tests for the Bioremediation of Unsanitary Landfill Waste Soils

  • Park, Sung-Chan;Lee, Young-Hee;Oh, Young-Sook
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.169-173
    • /
    • 2003
  • A treatability investigation was conducted to determine if landfarming would be effective for the remediation of unsanitary landfill waste soils. Calculations based on biodegradable organic carbon contents and initial CO$_2$ evolution rates revealed that landfarming has a high potential for landfill site remediation and that the optimum strategy for bioremediation is site-specific.

Bearing Capacity of Waste Landfill Reinforced by Geosynthetics (토목섬유로 보강된 폐기물 매립지반의 지지력 특성)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2007
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, the reuse of terminated waste disposal landfill site is needed an adequate stabilization of ground for increasing the bearing capacity and reduce the allowable settlement for the given structure. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. The in-situ cyclic plate loading tests were performed to determine the dynamic and static behaviors of reinforced ground with geosynthetics. Four series of test were conducted with variations of geosynthetics, number of geogrid layer. Based on the cyclic plate load test results, the bearing capacity ratio, subgrade modulus of ground, and the elastic rebound ratio were determined.

  • PDF

Estimation on Bearing Capacity of Waste Landfill Reinforced by Geosynthetics Using Numerical Analysis (수치해석에 의한 토목섬유 보강 폐기물 매립지반의 지지력 평가)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because of the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, in case of the construction of the building on such a landfill, ground settlement and reduced bearing capacity would be occurred without ground stabilization and proper reinforcement. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. A numerical simulation has been undertaken to model a layer of weathered soil overlaying a layer of geosynthetic reinforcement and waste disposal ground. The proposed analytical model can be used to obtain surface settlement characteristic in the two-dimensional deformation related reinforcement.

  • PDF

Applying methane and carbon flow balances for determination of first-order landfill gas model parameters

  • Park, Jin-Kyu;Chong, Yong-Gil;Tameda, Kazuo;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.374-383
    • /
    • 2020
  • Landfill gas (LFG) emissions from a given amount of landfill waste depend on the carbon flows in the waste. The objective of this study was to more accurately estimate the first-order decay parameters through methane (CH4) and carbon flow balances based on the analysis of a full-scale landfill with long-term data and detailed field records on LFG and leachate. The carbon storage factor for the case-study landfill was 0.055 g-degradable organic carbon (DOC) stored per g-wet waste and the amounts of DOC lost with the leachate were less than 1.3%. The appropriate CH4 generation rate constant (k) for bulk waste was 0.24 y-1. The the CH4 generation potential (L0) values ranged 33.7-46.7 m3-CH4 Mg-1, based on the fraction of DOC that can decompose (DOCf) value of 0.40. Results show that CH4 and carbon flow balance methods can be used to estimate model parameters appropriately and to predict long-term carbon emissions from landfills.

A Study on Increasing the Energy Recovery from Waste at Incheon Metropolitan City according to Landfill Tax Introduction (폐기물부담금제 도입에 따른 인천시 폐기물의 에너지화 제고방안 연구)

  • Lim, Jiyoung;Kim, Jinhan;Park, Junghwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.21-27
    • /
    • 2015
  • An introduction of landfill tax has been recently in issue in order to raise the financial resource for establishing waste resource-circulation society. The objectives of this study are to evaluate the plan of increasing energy recovery from waste at Incheon Metropolitan City, and to propose several points to be considered in terms of introducing the landfill tax. There are a lot of problems that impede energy recovery from waste at Incheon Metropolitan City, such as high-calorific waste from decrease of food waste to the municipal incineration plant, metals and batteries in the standard plastic garbage bag, etc. Alternative policies to solve these major problems have been drawn.