• Title/Summary/Keyword: waste heat recovery

Search Result 246, Processing Time 0.032 seconds

Influence of Working Fluids to Heat Transfer Characteristics of the Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery (저온 폐열회수용 진동세관형 히트파이프 열교환기의 작동 유체에 따른 열전달 특성)

  • 이욱현;임용빈;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.659-666
    • /
    • 2000
  • Heat transfer characteristics of a heat exchanger for low temperature waste heat recovery using oscillating capillary tube heat pipe were evaluated against the charge ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working fluids. The heat exchanger was composed of heat pipe with capillary tube bundles, having a 2.6mm in outer diameter, 1.4mm in inner diameter with 101m long, and 40 turns. Charge ratio of working fluid was 40% and 50%. Water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and9~27 kg /$m^2s$,, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-l42b and R-290 and it was proportional to Figure of merit for thermosyphons. As a result, it was thought that R-22 was the most suitable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Drying Characteristics of Red Pepper using Exhaust Heat Recovery System (배풍열 회수장치를 이용한 고추의 건조특성에 관한 연구)

  • Paek, Y;Cho, K-H;Chung, H-K
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.103-108
    • /
    • 2003
  • This study was performed to find out drying characteristics and develop waste heat recovery dryer. this system was initiated in order to recover discharged waste heat of drying air from drying chamber in agricultural products dryer and recycle for additional heat source that could save drying cost. The system consists of drying chamber, fan, burner, circulation pump and heat exchanger made of fins and tubes. For the system performance, drying experiments with fresh pepper were conducted, and comparisons on fuel consumption amount and drying performance were made between conventional dryer and the heat recovery system attached dryer.

  • PDF

Influence of Working Fluids to Heat Transfer Characteristics of Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery

  • Lee, Wook-Hyun;Im, Yong-Bin;Kim, Ju-Won;Kim, Jeung-Hoon;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Heat transfer characteristics of a heat exchanged for low temperature waste heat recovery using oscillating capillary tube heat pipe (OCHP) were evaluated against the charging ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working a 2.6mm in outside diameter, 1.44mm in inside diameter with 101m length and 140 turns. Charging ratio of working fluid was 40% and 50%. water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and 9~27 $4kg/m^2s$, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-142b and R-290 and it was proportional to Figure of Merit for thermosyphon. As a result, it was thought that R-22 was the most reasonable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF

An Experimental Study on the Heat Exchanger for the Engine Waste Heat Recovery Using Serrated Fins and Bayonet Tube (톱니형휜이 부착된 2중 열교환관을 이용한 엔진 배열회수기에 관한 실험적 연구)

  • Yang Tae-Jin;Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.685-691
    • /
    • 2005
  • In this study, high performance waste heat recovery heat exchanger was developed using the bayonet tube with spiral serrated fins. Especially, heat exchanger of the bayonet tube type was operated well because of double water passes mechanism and characteristics. A cooling water Passes down inner tubes to thimble-form tubes, then flows back up as it boils. The heat exchanger of bayonet tube type was composed of steel tube with 7channels$(I.D_1\;14mm.\;I.D_2\;31.6mm)$ and spiral serrated fins. The performance tests were conducted under the following conditions A cooling water flow rate was 273kg/h and engine l·pm was varied from 750rpm to 3500 rpm. From the experimental result. waste heat recovery was 9.21kW when engine rpm was 3500. and pressure drop was $15\~260mmHg/m^3$ The effectiveness of heat exchanger was about /$0.7\~0.9$. The performance of heat exchanger was evaluated by using the $\varepsilon-NTU$ method. In the study the NTU of the heat exchanger was $1.57\~2.33$.

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

Control of Water Heat Recovery Chiller Using Split Condenser Templifier Application

  • Cho, Haeng-Muk;Mahmud, Iqbal
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • By using the heat recovery of water-cooled chillers, it is possible to reduce the energy operating costs positively and at the same time it could fulfill the heating re-heat air conditioning system as well as the hot water requirements. Basically templifiers are designed to economically to turn the waste heat into useful heat. Waste heat is extracted from a fluid stream by cooling it in the evaporator, the compressor amplifies the temperature of the heat and the condenser delivers the heat to heating loads such as space heating, kitchens and domestic hot water. Design of higher water temperature requirements and split condenser heat recovery chiller system (using of templifiers) produced hotter condenser water approximately up to $60^{\circ}C$ and control the entire heat recovery system.

A Study on the Characteristics of Boiling Heat Transfer of Two-Phase Loop Thermosyphons (루우프형 2상 유동 열사이폰의 비등열전달 특성에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.639-646
    • /
    • 2014
  • A heat exchanger using two-phase loop thermosyphons was developed as a waste heat recovery system. An experimental study was carried out on the heat transfer characteristics of two-phase loop thermosyphons heat exchanger and the results from the experiments were used to see the possibility which the two-phase loop thermosyphons could be an alternate solution for waste heat recovery system. In the present work, R134a has been used as the working fluid and the filling rate do working fluid and heat flux have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The experimental results showed the provisional results as a waste heat recovery system.

Study on Two-Phase Loop Thermosyphon Heat Exchanger (루프형 2상 유동 열사이폰 열교환기에 관한 연구)

  • 이기우;박기호;이석호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.717-724
    • /
    • 2002
  • A heat exchanger (100,000 W) using two-phase loop thermosyphons (TLT) was developed as a waste heat recovery system. An experimental and simulation study was carried out on the heat transfer characteristics of TLT heat exchanger, and the results from the experiments were used to see the possibility which the TLT heat exchanger could be an alternate solution for waste heat recovery system. The experimental results showed the provisional results as a waste heat recovery system. Also computer simulation code can predict the TLT system about the effects of various variables for the operation. Computer simulation results based on the thermal resistance networks were compared with the experimental results. The study clearly shows that the computer simulation for the TLT heat exchanger can Predict the most cases of the affecting parameters involved, provided that correct empirical correlations are used.

Establishing the Models for Optimized Design of Water Injection in Boilers with Waste-heat-recovery System (가습연소 폐열회수 보일러의 물분사 설계모델 구축에 관한 연구)

  • Shin, Jaehun;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2021
  • In order to improve the overall efficiency and meet the emission regulations of boiler systems, the heat exchanging methods between inlet air and exhaust gas have been used in boiler systems, named as the waste-heat-recovery condensing boiler. Recently, to further improve the overall efficiency and to reduce the NOx emission simultaneously, the concept of the water injection into the inlet air is introduced. This study suggests the models for the optimized design parameters of water injection for waste-heat-recovery condensing boilers and performs the analysis regarding the water injection amount and droplet sizes for the optimized water injection. At first, the required amount of the water injection was estimated based on the 1st law of thermodynamics under the assumption of complete evaporation of the injected water. The result showed that the higher the inlet air and exhaust gas temperature into the heat exchanger, the larger the amount of injected water is needed. Then two droplet evaporation models were proposed to analyze the required droplet size of water injection for full evaporation of injected water: one is the evaporation model of droplet in the inlet air and the other is that on the wall of heat exchanger. Based on the results of two models, the maximum allowable droplet sizes of water injection were estimated in various boiler operating conditions with respect to the residence time of the inlet air in the heat exchanger.