• Title/Summary/Keyword: waste concrete powder

Search Result 174, Processing Time 0.025 seconds

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S.;Bensabra, H.;Chopart, J.P.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.100-110
    • /
    • 2022
  • Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.

The properties of cement mortar using waste pottery powder (폐도자기분말의 혼입에 따른 시멘트 모르타르의 특성)

  • Lee, Hwa-Young;Kim, Deuck-Mo;Mun, Kyoung-Ju;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.785-788
    • /
    • 2008
  • Ceramics manufactures in the nation produced more than 5,000 tons of waste pottery a year increasing industrial waste quantity. However, Almost researches were made to reduce environmental pollution and recycle waste ware. It is needed that they are used as recycled materials in order to prevent environmental pollution and gain economic profits. Therefore, the purpose of this study is to present the method of utilizing the recycled cements that are obtained from waste pottery. The test results that replacement of waste pottery powder by cement admixture at the level 10% had effect on the stripping strength(compressive strength). Also, When GBFS and WP used by cement admixture, WP is better than GBFS.

  • PDF

Rheology and Strength Properties Improvement of Recycle Cement by Admixture (혼화재료에 의한 재생시멘트의 레올로지 및 강도특성 개선)

  • 오상균;임승준;김정길
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.89-94
    • /
    • 2003
  • Recently, the study to reduce and recycle industrial waste is underway vigorously in the various fields of industry according to the conservation of environment and resources. In construction work, the disposal problem of its waste and environmental disruption have already been serious all over the world. However the recycle of waste concrete is still at an early stage, recycled aggregate from waste concrete have only used those as subsidiary road fillers. The research institute and the company make the study that it is about the properties of recycled aggregate and those structural capacity since 1990. Through the experimentation last year, we know that strength and fluidity of recycle cement are inferior to normal cement, and admixing aggregate powder deteriorates its strength. The purpose of this study is to search for appropriate heating time and to improve performance of the recycle cement while heating hardened cement which is crushed, we investigate separating aggregate from hardened cement by preheating and improvement of strength and fluidity inrecycle cement which contains admixture.

  • PDF

The Basic Study on the Underwater-Hardening Epoxy Mortar Using Stone Powder Sludge (석분슬러지를 이용한 수중 경화형 에폭시 모르타르의 개발에 관한 기초적 연구)

  • Jung Eun-Hye;Kawg Eun-Gu;Bae Dae-Kyung;Cho Sung-Hyun;Bae Kee-Sun;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.409-412
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performances are considered in structures. In generally, epoxy mortar is used to repair materials of underwater concrete. It is divided epoxy and filler which is organized cement and sand. Cement can be replaced by stone powder sludge in waste because the grading of stone powder sludge in drying state has similar to that of cement. As result of study, it is possible that stone powder sludge can be applied for replacement materials of cement in epoxy mortar, because the strength is not different when filler in epoxy mortar is alternated stone powder sludge.

  • PDF

The effect of wollastonite powder with pozzolan micro silica in conventional concrete containing recycled aggregate

  • Dinh-Cong, Du;Keykhosravi, Mohammad. H.;Alyousef, Rayed;Salih, Musab N.A.;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Poi-Ngian, Shek
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.541-552
    • /
    • 2019
  • Construction development and greenhouse gas emissions have globally required a strategic management to take some steps to stain and maintain the environment. Nowadays, recycled aggregates, in particular ceramic waste, have been widely used in concrete structures due to the economic and environmentally friendly solution, requiring the knowledge of recycled concrete. Also, one of the materials used as a substitute for concrete cement is wollastonite mineral to decrease carbon dioxide (CO2) from the cement production process by reducing the concrete consumption in concrete. The purpose of this study is to investigate the effect of wollastonite on the mechanical properties and durability of conventional composite concrete, containing recycled aggregates such as compressive strength, tensile strength (Brazilian test), and durability to acidic environment. On the other hand, in order to determine the strength and durability of the concrete, 5 mixing designs including different wollastonite values and recovered aggregates including constant values have been compared to the water - cement ratio (w/c) constant in all designs. The experimental results have shown that design 5 (containing 40% wollastonite) shows only 6.1% decrease in compressive strength and 4.9% decrease in tensile strength compared to the control plane. Consequently, the use of wollastonite powder to the manufacturing of conventional structural concrete containing recycled ceramic aggregates, in addition to improving some of the properties of concrete are environmentally friendly solutions, providing natural recycling of materials.

An Experimental Study on High Strength Concrete Using the LCD Waste Glass Powder (LCD 폐유리 미분말을 사용한 고강도 콘크리트에 관한 실험적 연구)

  • Kim, Byung-Chul;Cha, Tae-Gweon;Jang, Pan-Ki;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.335-341
    • /
    • 2015
  • Various display devices has been increasing also using waste LCD glass in accordance with the used developed, because circumstances that are most landfill or incineration, are needed research on recycling measure of the using waste LCD glass. Therefore, in this study, to try to assess the basic mechanical properties of concrete mixed with using waste LCD glass micropowder through the room mixed test. According to the study results, the more replacement rate increases, the characteristics of the concrete showed a tendency to decrease slightly. However, according to the small value, it is expected to improve the advanced experimental values by refining the grain size of the materials used to be processed into spheres.

A Study on the Properties of Mortar using Wet-type Waste Sludge according to Heating Temperature (가열온도별 습식방식 폐슬러지를 활용한 모르타르의 특성에 관한 연구)

  • Kang, Suk-Pyo;Cho, Ku-Young;Lee, Jun;Kim, Chang-Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, urban redevelopment programs and expansion of social infrastructure have caused massive amounts of construction waste in construction fields, and the mounds of it keep increasing every year. The disposal of construction waste is emerging as a national and social issue and the recycled powder generated by the treatment process of waste concrete is all being abolished or buried. Therefore, the purpose of this study is to utilize waste sludge generated by the wet-type treatment process of waste concrete as materials(binder, filler) for cement composite. This study evaluates physical and mechanical properties of mortar using recycled powder according to heating temperature, contents and applications. As a result of the chemical analysis, recycled powder is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than OPC. The charateristics of mortar using recycled powder, according to drying and heating temperature, shows that as the heating temperature increases, flow decreases. Also, compressive strength and porosity of mortar using recycled powder was superior when heating temperature was $600^{\circ}C$. Thus, it is revealed that an effective development of recycled powder is possible since the binder by cement composite recovers a hydraulic property during heating at $600^{\circ}C$.

  • PDF

Performance of polymer concrete incorporating waste marble and alfa fibers

  • Mansour, Rokbi;El Abidine, Rahmouni Z.;Brahim, Baali
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.331-343
    • /
    • 2017
  • In this study a polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with natural Alfa fibers has been studied. The results of flexural testing of unreinforced polymer concrete with different rates of charges (marble) showed that the concrete with 20% of marble is stronger and more rigid compared to other grades. Hence, a rate of 20% of marble powder is selected as the optimal value in the development of polymer concrete reinforced Alfa fibers. The fracture results of reinforced polymer concrete with 1 and 2 wt% of chopped untreated or treated Alfa fibers showed that treated Alfa (5% NaOH) fiber reinforced polymer concrete has higher fracture properties than other composites. We believe that this type of concrete provides a very promising alternative for the building industry seeking to achieve the objectives of sustainable development.

A Study on the Development for Photocatalytic Concrete with Waste Gas Reduction and Self-cleaning (배기가스 제거 및 자기정화용 광촉매 콘크리트 개발 연구)

  • Lee, Won-Am;Yang, Jin;Ryu, Jae-Sang;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.265-270
    • /
    • 2001
  • Nowadays, like any other areas we have asked that the concrete would get more and more properties to increase there performance. So, in this research we are intended to develop the Photocatalytic Concrete which is one of the High Performance Concrete with waste gas reduction and self-cleaning. The fundamental phenomena of the Photocatalytic Concrete were observed by the residue water-weight, SEM, flow and surface hardness(Pencil tester). As a result of this study, the Photocatalytic Concrete used Photocatalytic powder, OPC admixture and other materials can obtain its properties, also photocatalytic efficiency. Last of all, we are convinced of the Photocatalytic Concrete possibility and make an effort to develop its properties added a various study.

  • PDF