• Title/Summary/Keyword: waste ash

Search Result 637, Processing Time 0.021 seconds

Performance of Magnesia Cement Using MgCO3 and Serpentine

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.116-121
    • /
    • 2016
  • The amount of carbon dioxide ($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical methods of reducing $CO_2$ in building materials is the addition of slag and fly ash, like pozzolan material another method is to reduce $CO_2$ production by developing carbon negative cement. MgO-based cement from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, basic research on magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as the main starting materials, as well as blast furnace slag for the mineral admixture, was carried out for industrial waste material recycling. In order to increase the overall hydration activity, $MgCl_2$ was also added. In the case of the addition of $MgCl_2$as accelerating admixture, there was a promoting effect on the compressive strength. This was found to be due to the production of needle-like dense Mg-Cl hydrates. Mgnesia cement has a high viscosity due to its high specific surface area therefore, when the PC-based dispersing agent was added at a level of more than 1.0%, it had the effect of improving fluidity. In particular, the addition of $MgCl_2$ in magnesia cement using $MgCO_3$and magnesium silicate ore (serpentine) as main starting materials led to a lower expansion ratio and an increase in the freeze-thaw resistance finally, the addition of $MgCl_2$ as accelerating admixture led to good overall durability.

Effect of magnesium sulphate solution on compressive strength and sorptivity of blended concrete

  • Jena, Trilochan;Panda, Kishor C.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.267-278
    • /
    • 2020
  • This paper reports on the result of an experimental investigation carried out to study the compressive strength and sorptivity properties of blended cement concrete exposed to 5% and 10% MgSO4 solution using fly ash (FA) and silpozz. Usually in sulphate environment the minimum grade of concrete is M30 and the mix design is done for target mean strength of 39 MPa. Silpozz is manufactured by burning of agro-waste rice husk in designed furnace in between 600° to 700℃ which is one of the main agricultural residues obtained from the outer covering of rice grains during the milling process. There are four mix series taken with control mix. The control mix made 0% replacement of FA and silpozz with Ordinary Portland Cement (OPC). The first mix series made 0% FA and 10-30% replacement of silpozz with OPC. The second mix series made with 10% FA and 10-40% replacement of silpozz with OPC. The third mix series made 20% FA and 10-30% replacement of silpozz with OPC and the fourth mix series made 30% FA and 10-20% silpozz replaced with OPC. The samples (cubes) are prepared and cured in normal water and 5% and 10% MgSO4 solution for 7, 28 and 90 days. The studied parameters are compressive strength and strength deterioration factor (SDF) for 7, 28 and 90 days. The water absorption and sorptivity tests have been done after 28 days of normal water and magnesium sulphate solution curing. The investigation reflects that the blended cement concrete incorporating FA and silpozz showing better resistance against MgSO4 solution when compared to normal water curing (NWC) samples.

Antibacterial Effects against Various Foodborne Pathogens and Sensory Properties of Yogurt Supplemented with Panax ginseng Marc Extract

  • Eom, Su Jin;Hwang, Ji Eun;Kim, Kee-Tae;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.787-791
    • /
    • 2017
  • Panax ginseng marc is produced from fresh ginseng roots during processing and is generally treated as industrial waste. The primary aim of this study was to improve its utilization in the dairy industry as a potential high-value resource. Yogurt was prepared from 11% skim milk powder, 0.1% pectin, 10% sucrose, and ginseng marc ethanol extract (GME, 0.5% and 1.0%) in milk, and was inoculated with a 0.02% yogurt culture (Lactobacillus acidophilus, Bifido-bacterium longum, and Streptococcus thermophilus). After fermentation at $40^{\circ}C$ for 6-8 h, the physicochemical properties of samples were analyzed by the AOAC, Kjeldahl, and Soxhlet methods. Sensory evaluation was performed based on consumer acceptability scores with a 7-point scale, and antimicrobial effects were measured by the agar plate method. The moisture, crude protein, crude fat, and ash contents of yogurt supplemented with 1% GME were $85.06{\pm}0.06%$, $4.41{\pm}0.01%$, $4.30{\pm}0.05%$, and $0.81{\pm}0.03%$, respectively, with no significant changes noted from those of yogurt without GME (control), except for an increase in the crude fat content. The sensory scores of color, flavor, texture, overall taste, and overall acceptance of yogurt supplemented with below 1% GME did not differ significantly (p<0.05) to those of the control yogurt. In addition, the growths of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli, and Enterobacter sakazakii were inhibited during fermentation and storage. These results suggest that GME could be used in dairy products as a supplement and in the food industry as an antimicrobial material.

Sludge Disposal Analysis of Sanitary Paper Manufacturing Wastewater Treatment Plant (위생용지 생산 제지공장 폐수슬러지의 처리 현황)

  • Jung, Yong-Jun;Lee, Hong-Tae
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.471-476
    • /
    • 2013
  • The operating conditions of sludge disposal for sanitary paper manufacturing wastewater treatment plant were monitored on the basis of daily check sheets during the 3 years of operation. Generated wastes were mainly composed of 79% of sludge, 14% of ash, 5% of waste synthetic resin and 2% of etc. Maximum sludge was produced to 233 ton and the average was 113 ton daily, where the primary sludge occupied 85% and 15% for the secondary sludge. The concentration of coagulant for sludge dewatering was extremely exceeded and the additional experiment such as jar-test was required for the establishment of proper dosage. Presently, the generated sludges were partially treated outside and were also partly handled inside. In the future, most sludges will be expected to be treated to recycling material for the iron industry.

A study on the physico-chemical characteristics of municipal solid wastes generated in the sunchon city (순천시 생활쓰레기의 계절별 조성 및 물리·화학적 특성에 관한 연구)

  • Hu, Kwan;Ko, Oh-Suk;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.105-110
    • /
    • 2001
  • To provide successful treatment policy and to apply sources for establishing plan, municipal solid wastes quantity was investigated as physical and chemical characteristics from Sunchon city. Results are like following after checking out characteristics by seasons, type. The average specific weight of municipal solid wastes is $219kg/m^3$ for combustible wastes, $391kg/m^3$ for non-combustible. Food wastes of combustible wastes contained moisture of 38.1% as standard of moisture weight per real weight, 49.6% moisture is contained in non-combustible wastes except food wastes moisture. Moisture, volatile and ash are contented by 16.9%, 68.1% and 15.0% in combustible wastes except food wastes. That means combustible wastes are available a refuse incineration. The low calorific value of only combustible waste is 2,962kca1/kg that is good for refuse incineration.

  • PDF

Development of Technologies for Intermediate Stuff from Waste Agricultural Plastic Film (농업용 폐비닐로부터 중간원료의 경제적인 제조기술 개발)

  • Shon, Sang-Jin;Kim, Hae-Tae;Kim, Myoung-Ho;Kim, Hyung-Kuk;Ahn, Tae-Kwang;Zhou, Gong-Ming;Chen, De-Zhen
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.97-106
    • /
    • 2005
  • 현재 우리나라에서만 연간 약 26만들이 발생되고 있는 농업용 폐비닐은 재생원료로 재활용되어지면 국내외에서 그 용도가 매우 많으나 멀칭용으로 사용되었던 폐비닐은 그 오염도가 워낙 심하여 쉽게 재활용할 수 없는 처지이다. 즉 공급과 수요는 많으나 재생기술의 한계가 병목으로 작용하고 있는 현실이다. 따라서 간단하고 경제적인 방법으로 재활용할 수 있는 습식 및 건식 재생기술의 개발이 계속되어 요구되어 왔다. 강제 세척, 회전분리, 열풍 건조 및 압착성형을 이용한 새로운 간이습식공정을 통하여 멀칭용 농업용 폐비닐을 순도 95% 이상의 탄화 및 열화가 적은 압착 펠렛을 경제적으로 제조할 수 있었다. 이들의 재생 수지는 인장강도 $168.6{\pm}3.9kgf/cm^2$, 파단신을 315.8%, 인장탄성을 $2,551.8{\pm}50.1kgf/cm^2$, 굴곡강도와 굴곡탄성을 $166.7{\pm}7.4kgf/cm^2,\;5,716.2{\pm}242.2kgf/cm^2$ 그리고 충격강도는 $49.2kgf\;cm/cm$을 각각 보여 연질수지로써 기능하기 위한 충분한 성능을 보유하고 있음을 알 수 있었다. 또한 이들의 응용분야 확대를 위하여 fly ash 및 탄산칼슘을 배합하여 이들의 물성변화를 살폈다.

  • PDF

Ammonia Removal Characteristics of Artificial Zeolite Pellet Using Multi-Stage Adsorption Column (다단계 흡착장치를 이용한 인공제오라이트 펠렛의 암모니아 제거 특성)

  • 김완태;이성오;윤연흠;신방섭
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.20-26
    • /
    • 1998
  • The mdy is to investigate the capanty and charactoristics of ammonia removal from waste water by artificial zeolite pellet which was synlhesized physicochemically using fly ash. A multi-stage adsorption method was adapted anrl the zeolile pellct as well as two types of natural zeolites are used for adsorption tests of ammonia io order to compare he adsorption capabilities with one anothcr. The expzrimmts was conducted into thrze stages, lhat is early, mddle and last according la the adsorbing stage and lhe number of column used. When camparing the removal efiicicncy in the final stage namral rcolites ratcd 64.5% and 78 5%, while zeohtc pdct rated 80.596, which showed larger amount of ammonia was adsorbed continuously than in other samples. Thc amount of adsorbed ammonia increased rs thc concenlraiion of ammonia increased and tl~e va~iation depending on the pH range showcd that larger amaunt of ammonia tended to be adsorbed m the neutral or akali pH range than in the acid pH range.

  • PDF

Sediment Treatment by a Centrifugal Device (원심분리 장치를 이용한 퇴적물 처리)

  • Lee, Yong-Sik;Jo, Young-Min;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.342-348
    • /
    • 2001
  • The present work is to introduce the preliminary experimental results for a primary hydrocyclones process in lake sediment thickening. A few cyclones based on the Rietema standard geometry were prepared. The test particles were sediments from a local lake and waste coal fly ash for a reference test. As a result of the chemical analysis, organic contaminants were abundantly found in smaller particles in overflow. Experimental results showed that the physical characteristics of particles, configuration of the cyclone and operating variables including feed solids concentration and volumetric flow rate could affect the separation efficiency. The limiting feeding velocity for the separation and enrichment of particles was 1.5 m/s, higher separation efficiency, in general, was obtained under the high velocity with the small cyclones.

  • PDF

Effect of Pile Temperature Control on Changes of Nutritional and Microbilological Parameters of Composted Poultry Waste (육계분의 콤포스터 처리시 내부온도 조절이 생산물의 영양학적, 미생물학적 성상에 미치는 영향)

  • Kwak, Wan-Sup;kim, Tae-Gyu;Kim, Oun-Hyun;Kim, Chagn-Won
    • Journal of Animal Environmental Science
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1996
  • In an attempt to recycle as feed or fertilizer, broiler litter containing rice hull was manually composted under the control of peak temperature of piles(uncontrolled or controlled below $70^{\circ}C$ or below $60^{\circ}C$) in each of three $1.0\;{\times}\;1.0\;{\times}\;1.2m$ dimensional facilities. Changes of nutritional and microbiological parameters were evaluated throughout the 8 weeks of processing period. The initial content of crude protein(29.6%) decreased to 17.8% after 8 weeks of composting. The rapid nitrogen(N) loss observed in the early phase was attributed mainly to non-protein-N(NPN) loss. The initial content of ash(19.1%) increased to $26{\sim}29%$ after 8 weeks. For toxic heavy metals, Cr, Pb, and Hg contents of final composts were far less than the maximum tolerance levels allowed in food or compost. Bacterial growth was rather depressed until the second week, increased thereafter, and reached to peak($10^{12}cfu$ level) at the 4th week of composting. With composting, actinomycetes were active at the level of $10^7\;to\;10^9$. Fungi were active during the first to third week of composting. In general, control of pile temperature below $70^{\circ}C$ did not remarkably alter the nutritional and microbiological parameters of broiler litter compost, compared to that of pile temperature below $60^{\circ}C$. Further researches on prevention from the rapid loss of NPN in the early phase of composting are required for more effective recycling of broiler litter.

  • PDF

Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers

  • Fediuk, Roman;Mosaberpanah, Mohammad A.;Lesovik, Valery
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • This study has been carried out in two-phases to develop Fiber Reinforced Self-Compacting Concrete (FRSCC) performance. In the first phase, the composition of the quaternary composite binder compromised CEM I 42.5N (58-70%), Rice Husk Ash (25-37%), quartz sand (2.5-7.5%) and limestone crushing waste (2.5-7.5%) were optimized. And in the second phase, the effect of two fiber types (steel brass-plated and basalt) was investigated on the SCC optimized with the optimum CB as disperse reinforcement at 6 different ratios of 1, 1.2, 1.4, 1.6, 1.8, and 2.0% by weight of mix for each type. In this study, the theoretical principles of the synthesis of self-compacting dispersion-reinforced concrete have been developed which consists of optimizing structure-formation processes through the use of a mineral modifier, together with ground crushed cement in a vario-planetary mill to a specific surface area of 550 m2 / kg. The amorphous silica in the modifier composition intensifies the binding of calcium hydroxide formed during the hydration of C3S, helps reduce the basicity of the cement-composite, while reducing the growth of portlandite crystals. Limestone particles contribute to the formation of calcium hydrocarbonate and, together with fine ground quartz sand; act as microfiller, clogging the pores of the cement. Furthermore, the results revealed that the effect of fiber addition improves the mechanical properties of FRSCC. It was found that the steel fiber performed better than basalt fiber on tensile strength and modulus of elasticity; however, both fibers have the same performance on the first crack strength and sample destruction of FRSCC. It also illustrates that there will be an optimum percentage of fiber addition.