• Title/Summary/Keyword: waste air

Search Result 983, Processing Time 0.03 seconds

An Experimental Study on Physical and Mechanical Properties of Steel Fiber Reinforced Concrete Containing Waste Glass (폐유리를 혼입한 강섬유보강 콘크리트의 물리ㆍ역학적 특성에 관한 실험적 연구)

  • 박승범;이봉춘;조광연;이택우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.903-908
    • /
    • 2002
  • The production of waste glasses has been increased with the development of industry. The utilization of waste glass for concrete can cause the concrete to be cracked and to be weakened due to an expansion by alkali-silica reaction(ASR). When used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. In this study, we conducted basic experimental research to analyze the possibilities of recycling of amber waste glass as fine aggregates for steel fiber reinforced concrete. Test results of fresh concrete. slump is decreased because grain shape is angular and air content is increased due to involving small size particles so much in waste glasses. Also. tensile and flexural strengths increased as the content of steel fibers increased. In conclusion, the content of waste glass below 40% is reasonable and usage of pertinent admixture is necessary to obtain workability or air content.

  • PDF

The Study of distribution relationship of dioxin isomers in some environmental matrix (몇 가지 환경 시료 중에 함유된 다이옥신류 이성질체들의 분포에 대한 상관성 연구)

  • Kim, Yunje;Jun, Myung Yoon
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.419-424
    • /
    • 2005
  • In recent years, dioxins which were designated as persistent organic pollutants and endocrine disrupters are treated as substance of environmental pollution and studied about human health risk assessment, emission pollutants estimation, analytical methods and so on. It is easy that dioxins are accumulated to soil because of the atmosphere circulation of burning up the waste. This is the comparative studies on the distribution relationship of dioxin isomers in exhausted gas of industrial waste and urban waste incinerators, ambient air and soil. A basis of PCDDs and PCDFs based on OCDD was drawn up to the curve and they correspond to dioxin isomers in exhausted gas of industrial waste and urban waste incinerators and ambient air. On comparing these results, It was found that the ambient air and exhausted gas of industrial waste incinerators were very similar in curve and ratio. Consequently, environmental by exposed dioxin depends on the exhausted gas of industrial waste incinerators than urban waste incinerators. In case of soil, even though we can not completely rule out the possibility of pollution source bring on pesticide and other factors, and naturally biological dissociations, the curve shape is very similar to exhausted gas of industrial waste incinerators and ambient air. So, we inform here that it was mainly caused by these environmental factors.

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.

Dry Separation of PVC Film from Plastic Film Mixture by Using Air Table

  • Song, Young-Jun;Hiroki Yotsumoto;Lee, Gye-Seung
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2002
  • This study was conducted in order to remove Poly vinyl chloride(PVC) from the waste plastic film mixture. The fittings of Air Table was modified to increase the separation efficiency of PVC and PE(poly ethylene). PE and PVC was successfully separated from PVC-PE film mixture with the yield of PE 90% or more and with his grade of 99% or more, using the improved Air Table. The details of the separation condition and results will be discussed in this paper. Dry separation, Waste plastic film, PVC, Air Table. The details of the separation condition and results will be discussed in this paper.

A Study on the Optimal Design of Confluent Pipe for Waste Collection Piping System (쓰레기 자동집하시설 이송배관의 합류관 최적설계 연구)

  • Sung, Sun-Kyung;Park, Jun-Gil;Suh, Sang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.428-432
    • /
    • 2012
  • In the waste collection system, living waste is collected through the piping network. There are many confluent pipes in a piping network. These confluent pipes were often clogged up with waste. The optimal configuration of the confluent pipes has been defined by the design guide. However, nobody know how this design guide were determined. Therefore, in this paper, we found the design data for the confluent pipe configuration in order to avoid the waste clogging in a piping network. The distance between connected point on the confluent pipes should be longer than the previous design guide.

Risk Assessment and Air Pollution by the Open Burning of Agricultural Waste and Residues (농업폐기물 소각에 따른 대기오염 실태 및 위해성 평가)

  • Kim, Moon-Hyeon;Yang, Won-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.30-35
    • /
    • 2007
  • Waste policies with waste metering system and recycling in 1995 have contributed to the reduction of solid waste generation. Now rural areas as well as urban areas produce less amount of solid wastes in terms of per capita. However most policies in relation to waste issue have been concentrated in urban areas. Large portion of agricultural waste in rural region are being illegally treated such as open incineration or burned out on the road. In this study, we assessed the atmospheric air quality and health risk by illegal open incineration in rural region. In case of benzene level, worst concentration during illegal open incineration was 0.23 ppm and cancer risk by exposure was estimated to $2.29{\times}10^{-3}$.

A Pilot Study on Emission Analysis of Air Pollutants Produced from Portable Recycling of Asphalt Concrete (간이이동법에 의한 폐아스콘 재생시 대기오염물의 배출분석에 대한 실험적 연구)

  • Lee, Byeong-Kyu;Kim, Haeng-Ah;Jeong, Ui-Ryang;Duong, Trang;Chae, Po-Gi;Park, Kyung-Won
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.385-392
    • /
    • 2007
  • Currently, portable equipment for recycling of waste asphalt concrete (ASCON) has been used. However, any air pollution control devices are not attached in the simple portable one. Thus, a lot of air pollutants have been produced from recycling processes of waste ASCON which resulted from aging of paved roads or repavement of roads. This study deals with a preliminary result of concentration analysis of air pollutants obtained from a pilot and a real recycling processes of waste ASCON using simple portable recycling equipment. Air pollutants were taken from 4 steps of the pilot recycling process including an initial heating by liquid petroleum gas (LPG), intermediate heating and melting (H&M) process, final H&M process, and pavement processes using recycled ASCON at the recycling site. Also, air pollutants were taken front 4 steps of the real recycling processes including an initial H&M, final H&M and mixing, loading of recycled ASCON to dump trucks, and at the recycling site after leaving the loaded dump trucks for real pavement sites. The air pollutants measured in this study include volatile organic compounds (VOCs), aldehydes, particulate matter (PM: PM1, PM2.5, PM7, PM10, TSP (total suspended particulate)). The identified concentrations of VOCs increased with increasing time or degree for H&M of waste ASCON. In particular, very high concentrations of the VOCs at the status of complete melting, which is exposed to the air, of the waste ASCON just before paving tv the recycled ASCON at the recycling site. Also, considerable amount of VOCs were identified from the recycling equipment after the dump trucks leaded by recycled ASCON leaved the recycling site for the pavement sites. The relative level of formaldehyde exceeded 80% of the aldehydes Identified in the recycling processes. This is because the waste ASCON is exposed to direct flame of LPG during H&M processes. The PM concentrations measured in the winter recycling processes, such as the loading and rotation processes of waste ASCON into/in the recycling equipment for H&M, were much higher than those in the summer ones. In particular, the concentrations of coarse particles such as PM7 and PM10 during the winter recycling were very high as compared those during the summer one.

Research on Performance of Large Rotor-type Heat Recovery Exchanger using CFD Analysis on Surface Corrugation (요철형상의 CFD 해석을 통한 대용량 로타형 폐열회수열교환기 성능에 관한 연구)

  • Kim, Dong-Gyu;Ha, Byeong-Yong;Kim, Kun-Oh;Kum, Jong-Soo;Jeong, Seok-Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.875-880
    • /
    • 2012
  • The field of the large volume heat exchanger for wasted heat recovery ventilation system is being expanded enormously seeing as the fact that the quantity of reducing energies are huge due to the large volume heat exchanger for wasted heat recovery system at large buildings and factories, which consume large amount of energies while it has been arising huge amount of losses in Korea because of the lack of technology. To develop large volume waste heat recovery heat exchanger, rotor type heat exchanger was simulated for the surface corrugation. Based on the simulation results produced $30,000m^3/h$ grade waste heat recovery, heat exchanger was performed for the actual experiment. In addition, performance tests exceed the capacity of a large waste heat recovery heat exchanger performance test methods proposed.

A Study on Estimation of Air Pollutants Emission from Agricultural Waste Burning (농업잔재물 노천소각에 의한 대기오염물질 배출량 산출에 관한 연구)

  • Kim, Dong Young;Choi, Min-Ae;Han, Yong-Hee;Park, Sung-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.167-175
    • /
    • 2016
  • In this study, we estimate air pollutants emission from agricultural waste burning. We investigated activities related to agricultural waste burning such as crop burning rates, location, and time by region. The average crop burning rates per square meter farmland of fruits, pulses, barleys, cereals, vegetables, and special crops were $273.1g/m^2$, $105.7g/m^2$, $7.4g/m^2$, $121.0g/m^2$, $290.7g/m^2$, and $392.9g/m^2$, respectively. We estimated air pollutants emissions with pre-developed emission factors. The estimated air pollutant emission of agricultural biomass burning were CO 148,028 ton/year, $NO_x$ 5,220 ton/year, $SO_x$ 11 ton/year, VOC 59,767 ton/year, TSP 21,548 ton/year, $PM_{10}$ 8,909 ton/year, $PM_{2.5}$ 7,405 ton/year, and $NH_3$ 5 ton/year. When these results compared with the entire emissions of national inventory (CAPSS), CO, VOC, $PM_{10}$ account for about 17.8%, 6.2%, 6.7% of the total, respectively.

Establishing the Models for Optimized Design of Water Injection in Boilers with Waste-heat-recovery System (가습연소 폐열회수 보일러의 물분사 설계모델 구축에 관한 연구)

  • Shin, Jaehun;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2021
  • In order to improve the overall efficiency and meet the emission regulations of boiler systems, the heat exchanging methods between inlet air and exhaust gas have been used in boiler systems, named as the waste-heat-recovery condensing boiler. Recently, to further improve the overall efficiency and to reduce the NOx emission simultaneously, the concept of the water injection into the inlet air is introduced. This study suggests the models for the optimized design parameters of water injection for waste-heat-recovery condensing boilers and performs the analysis regarding the water injection amount and droplet sizes for the optimized water injection. At first, the required amount of the water injection was estimated based on the 1st law of thermodynamics under the assumption of complete evaporation of the injected water. The result showed that the higher the inlet air and exhaust gas temperature into the heat exchanger, the larger the amount of injected water is needed. Then two droplet evaporation models were proposed to analyze the required droplet size of water injection for full evaporation of injected water: one is the evaporation model of droplet in the inlet air and the other is that on the wall of heat exchanger. Based on the results of two models, the maximum allowable droplet sizes of water injection were estimated in various boiler operating conditions with respect to the residence time of the inlet air in the heat exchanger.