• Title/Summary/Keyword: waste PET bottles

Search Result 14, Processing Time 0.032 seconds

An Experimental Study on the Properties of Lightweight Aggregate Concrete Using Waste PET Bottles (폐 PET병을 이용한 경량골재콘크리트의 특성에 관한 실험적 연구)

  • 최연왕;정지승;문대중;신화철;황윤태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.211-216
    • /
    • 2002
  • Recently, the more the PET bottles are needed, the more waste PET bottles were produced. So, if there was no suitable recycling, that was contaminate our environment and use up the natural resources. This paper deals with the artificial lightweight aggregate(ALA), made of waste PET bottles, and the properties of concrete replaced with ALA. As a result of experiment, it is shown that the specific gravity of PBLA is 1.39, the unit volume weight is 844 kg/$cm^3$, and absorbing rate is 0. In absorbing rate test, the rate is 10 % increased by replacing of 20 % PBLA and the mixture rate for water and cement is 44.6 % and 51.2 %, in case target strength for 240kgf/$cm^2$, and 270kg/$cm^2$, by added PBLA 75 % and 50 % respectively. So, to obtain a certain target strength, appropriate W/C ratio is required the replacement ratio of PBLA.

  • PDF

Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites (재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Hwang-Hee;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • The main objective of this study was to evaluate the effect of recycled PET fiber made from waste PET bottle on the control of plastic shrinkage cracking of cement based composites. PET is blown as a plastic material and used in a variety products such as a beverage bottle. However, waste PET bottles are thrown after the usage, raising huge problems in terms of the environment. Thus, the research on the method to recycle the PET bottles indicates important aspects in environment and economy. The method to recycle waste PET bottles as a reinforcing fiber for cement based composites is one of effective methods in terms of the recycle of waste PET bottles. In this research, the effect of recycled PET fiber geometry and length on the control of plastic shrinkage was examined through thin slab tests. A test program was carried out to understand the influence of fiber geometry, length and fiber volume fraction. Three type of recycled PET fibers including straight, twist crimped and embossed type. Three volume fraction and two fiber length were investigated for each of the three fiber geometry. Test results indicated that recycled PET fibers are effective in controlling plastic shrinkage cracking in cement based composites. In respect to effect of length of fiber, longer fiber was observed to have efficient cracking controlling with low volume fraction in same fiber geometry while shorter fiber controled plastic shrinkage cracking efficiently as addition rate increase. Also, embossed type fibers were more effective in controlling plastic shrinkage cracking than other geometry fiber at low volume fraction. But, for high volume fraction, straight type fibers were most effective in plastic shrinkage cracking controlling in cement based composites.

Sustainability in PET Packaging

  • Shin, Yang-Jai;Kang, Dong-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.105-111
    • /
    • 2009
  • In this work, source reduction of poly ethylene terephthalate (PET) packaging are discussed as aspect of sustainability, such as reuse, refill and recycling through the various treatment methods and historical studies for municipal solid waste (MSW) disposal. Since PET has good chemical, physical and mechanical properties, and provides good oxygen and carbon dioxide barrier properties, PET is one of the most widely used thermoplastic polyester in the U.S. and around the world. As the demand for non-renewable PET is increasing, several approaches have been developed to meet economical feasibility and environmental responsibility without degrading material performance. Several companies, such as Coca-Cola Co., Easterform Packaging Co. and Kraft, have tried to develop lightweight PET bottle, and some of lightweight PET bottles are already commercialized. Reuse and refilling for PET container is well developed in Europe, such as Denmark, German and Netherland by supportive legislation and policies. Recycling process is the best way to economically reduce PET waste. In consequence, advanced technique and further development must be provided due to increasing PET packaging waste.

  • PDF

A Study on the Quality Characteristic of Mortar Using Lightweight Aggregate with Waste PET Bottle (폐 PET 병을 이용한 경량모르터의 품질특성에 관한 연구)

  • Choi Yun-Wang
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2003
  • Lightweight aggregate for concrete was manufactured from recycling the waste PET bottles (PET Bottle Lightweight Aggregate, LAPET). The qualities of LAPET and its mortar were investigated. Specific gravity and unit weight of LAPET was very low in comparison with river sand like as 1.39, 844 kg/㎥ respectively. In addition, compressive strength of concrete significantly decreased because of specific gravity of aggregate decreased with increases in containing ratio. When LAPET was contained to 25% and 50% of river sand, compressive strength of concrete at 28 days was indicated more 30MPa. Most of LAPET was generally showed to round shape and fluidity of mortar increased significantly due to sleeking the surface texture of LAPET. On the other hand, capillary absorption of mortar with LAPET was greatly increased in comparison with that of mortar without LAPET because of LAPET was composed of singular gradation. Absorption of LAPET was 0% because the interior structure of LAPET consists of PET like as organic high polymer. Therefore the fault of normal lightweight aggregate, absorption, will be improved. It could expect several advantages that the pollution of environment will be previously prevent and the waste resources could be recycled if LAPET is reused as aggregate for Lightweight concrete.

Bond and Flexural Properties of Fiber Reinforced Concrete with Recycled Poly Ethylene Terephthalate Waste (재생 폐 PET섬유보강 콘크리트의 부착 및 휨 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Choi, Min-Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.401-406
    • /
    • 2008
  • This study can be used to produce structurally efficient recycled PET fiber from used waste PET bottles and evaluated the bond performance of the three type of recycled PET fiber and cement matrix. Also, the flexural tests were performed on concrete reinforced using the three type of recycled PET fibers. The test results showed that the recycled PET fiber was significantly increased bond strength. The flexural test results are demonstrated that recycled PET fibers improved the flexural toughness of concrete. Based on the bond and flexural test results, the bond and flexural performance of embossed type recycled PET fibers were significantly better than those of the other shape fibers.

A study of Improvement of Stiffness for Plastic PET bottle with Different Geometries and Numbers of Rib (리브 형상 및 개수에 따른 사각플라스틱 페트병의 강성보강에 관한 연구)

  • Young-Hoon Lee;Bum-Jin Park;Eui-Chul Jung;Jung-Gil Oh;Seok-Guwan Hong
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.33-41
    • /
    • 2023
  • Excessive use of plastic bottles contributes to a significant environmental issue due to the high volume of plastic waste generated. To address this, efforts are needed to reduce the weight of plastic bottles. However, indiscriminate weight reduction may compromise the essential rigidity required for plastic bottles. Extensive research on rib shape for pressure vessels are exists, but there is a few research of rib shapes to enhance the stiffness of plastic bottles. The following results were obtained from the analyses conducted in this study. 1) Among the rib cross-sections of square, trapezoid, and triangle, the buckling critical load of PET bottles with square-shaped ribs is improved by about 14% compared to the buckling critical load of PET bottles without ribs. 2) The buckling critical load is improved by about 18% when a square-shaped rib with an aspect ratio of 0.2 is applied, compared to the buckling critical load of the bottle without the rib. 3) When longitudinal and transverse square ribs were applied to the axial direction of the PET bottle, the buckling critical load was improved by about 32% and 58% compared to the buckling critical load of the PET bottle without ribs, respectively, indicating that applying longitudinal ribs is effective in reinforcing the stiffness of PET bottles. 4) When 14 transverse ribs were applied, the maximum improvement was about 48% compared to the buckling critical load of the plastic bottle without ribs. 5) When 3 longitudinal ribs were applied on each side, the maximum improvement was about 76% compared to the buckling critical load of the bottle without ribs. Therefore, it was concluded that for effective stiffness reinforcement of a 500ml square bottle with a thickness of 0.5mm, 3 square-shaped ribs with an aspect ratio of 0.2 should be applied in the longitudinal direction relative to the axial direction of the bottle.

Development of IoT-based Can Compactor/PET Bottle Crusher Management System (IoT 기반의 캔/PET병 압착파쇄기 관리시스템 개발)

  • Dae-Hyun Ryu;Ye-Seong Kang;Tae-Wan Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1239-1244
    • /
    • 2023
  • In this study, we developed an IoT-based management system to manage a can/PET crusher. Various sensors such as two load cells, DHT22 temperature and humidity sensor, and fine dust meter were interfaced with ESP32 to construct an IoT device, and a management server was built using Node-RED. The system monitors the weight of pressed cans and shredded PET bottles in real time and sends a text message to the manager when the weight exceeds the predetermined threshold for timely collection. The results of the operational test confirmed that the system provides accurate monitoring and efficient notification functions, and offers the possibility of solving environmental problems by improving the efficiency of waste management such as cans and PET bottles.

The Quality of artificial lightweight aggregates using waste PET bottles and Properties of their mortar (폐 PET병을 재활용한 인공경량골재의 품질 및 모르타르의 특성)

  • Choi, Yung-Wang;Lim, Hak-Sang;Chung, Jee-Seung;Choi, Wook;Hwang, Youn-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.631-636
    • /
    • 2002
  • This study shows basic data for using as the structural lightweight aggregate. This will be the procedural method of recycling environmental close waste PET bottle lightweight aggregate(PBLA) that is rapidly increased the amount of production of waste PET bottle recently, the quality of developed PBLA and the fundamental properties by analyzing of mortar containing with PBLA. After experiment, the result shows the PBLA quality that have oven dry specific gravity of 1.39, unit volume weight of 844 kg/m$^3$ and absorption rate of 0% is satisfied with qualify regulation of lightweight aggregate. The flowability of mortar containing PBLA is increased maximum 16% with increasing mixing ratio of PBLA, however the compressive strength of mortar is decreased maximum 35% with increasing mixing ratio of PBLA.

  • PDF

Strength and Crack Resistance Properties of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성)

  • Kim, Sung-Bae;Kim, Hyun-Young;Yi, Na-Hyun;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The main objective of this study was to evaluate the effect of recycled PET (RPET) fiber made from waste PET bottles to examine application on concrete member. To evaluate the reinforcement effect of RPET fiber in concrete member, experimental tests were performed, such as mechanical property tests (compressive strength, modulus of elasticity and splitting tensile strength) and drying shrinkage test. In mechanical property tests, compressive strength and modulus of elasticity in concrete mixed with RPET fiber gradually decreased, but splitting tensile strength gradually increased as volume fraction of fiber increased. In drying shrinkage test, free drying shrinkage increased. In restrained case, in contrast, crack occurrence was delayed because of tensile resistance increase by RPET fiber. The comparison of RPET and PP fiber added concrete specimen's properties showed that two materials had similar properties. In conclusion, RPET fiber is an alternative material of PP fiber, even finer for its excellence in eco-friendliness due to the recycling of waste PET bottles and its possible contribution to the pollution declination.

Environmental Impact Assessment of Beverage Containers (음료 포장용기의 환경성 평가)

  • Seo, Yong-Chil;Chung, Jae-Chun;Shim, Sang-Guel;Kwon, Dong-Myung
    • Clean Technology
    • /
    • v.3 no.1
    • /
    • pp.88-95
    • /
    • 1997
  • Energy required, air emission, and solid waste generation are calculated with available foreign data ad domestic status using Life Cycle Analysis in order to compare the environmental impact of beverage containers such as PET bottle, aluminum can, glass bottle, and paper pack. Glass bottles are found to be the worst acceptability when considering only recycling rate of glass cullet, however it becomme the best when the refill(reuse) rate of glass bottles is accounted into. To assess tile current and future environmental impact of beverage containers, energy required, air emission, solid waste generation of current data and recycling goals are compared. As a result of the study, recycling of each containers and the reuse of glass bottles must be increased by governmental enforcement to reduce the environmental impacts by beverage containers. Further study on this subject using detailed LCA(life cycle assessment) data should be implemented for the exact environmental and economic assessment.

  • PDF