• Title/Summary/Keyword: warning and prediction system

Search Result 100, Processing Time 0.023 seconds

Diabetes Detection and Forecasting using Machine Learning Approaches: Current State-of-the-art

  • Alwalid Alhashem;Aiman Abdulbaset ;Faisal Almudarra ;Hazzaa Alshareef ;Mshari Alqasoumi ;Atta-ur Rahman ;Maqsood Mahmud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.199-208
    • /
    • 2023
  • The emergence of COVID-19 virus has shaken almost every aspect of human life including but not limited to social, financial, and economic changes. One of the most significant impacts was obviously healthcare. Now though the pandemic has been over, its aftereffects are still there. Among them, a prominent one is people lifestyle. Work from home, enhanced screen time, limited mobility and walking habits, junk food, lack of sleep etc. are several factors that have still been affecting human health. Consequently, diseases like diabetes, high blood pressure, anxiety etc. have been emerging at a speed never witnessed before and it mainly includes the people at young age. The situation demands an early prediction, detection, and warning system to alert the people at risk. AI and Machine learning has been investigated tremendously for solving the problems in almost every aspect of human life, especially healthcare and results are promising. This study focuses on reviewing the machine learning based approaches conducted in detection and prediction of diabetes especially during and post pandemic era. That will help find a research gap and significance of the study especially for the researchers and scholars in the same field.

Implementing of a Machine Learning-based College Dropout Prediction Model (머신러닝 기반 대학생 중도탈락 예측 모델 구현 방안)

  • Yoon-Jung Roh
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.119-126
    • /
    • 2024
  • This study aims to evaluate the feasibility of an early warning system for college dropout by machine learning the main patterns that affect college student dropout and to suggest ways to implement a system that can actively prevent it. For this purpose, a performance comparison experiment was conducted using five types of machine learning-based algorithms using data from the Korean Educational Longitudinal Study, 2005, conducted by the Korea Educational Development Institute. As a result of the experiment, the identification accuracy rate of students with the intention to drop out was up to 94.0% when using Random Forest, and the recall rate of students with the intention of dropping out was up to 77.0% when using Logistic Regression. It was measured. Lastly, based on the highest prediction model, we will provide counseling and management to students who are likely to drop out, and in particular, we will apply factors showing high importance by characteristic to the counseling method model. This study seeks to implement a model using IT technology to solve the career problems faced by college students, as dropout causes great costs to universities and individuals.

Development on Early Warning System about Technology Leakage of Small and Medium Enterprises (중소기업 기술 유출에 대한 조기경보시스템 개발에 대한 연구)

  • Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.143-159
    • /
    • 2017
  • Due to the rapid development of IT in recent years, not only personal information but also the key technologies and information leakage that companies have are becoming important issues. For the enterprise, the core technology that the company possesses is a very important part for the survival of the enterprise and for the continuous competitive advantage. Recently, there have been many cases of technical infringement. Technology leaks not only cause tremendous financial losses such as falling stock prices for companies, but they also have a negative impact on corporate reputation and delays in corporate development. In the case of SMEs, where core technology is an important part of the enterprise, compared to large corporations, the preparation for technological leakage can be seen as an indispensable factor in the existence of the enterprise. As the necessity and importance of Information Security Management (ISM) is emerging, it is necessary to check and prepare for the threat of technology infringement early in the enterprise. Nevertheless, previous studies have shown that the majority of policy alternatives are represented by about 90%. As a research method, literature analysis accounted for 76% and empirical and statistical analysis accounted for a relatively low rate of 16%. For this reason, it is necessary to study the management model and prediction model to prevent leakage of technology to meet the characteristics of SMEs. In this study, before analyzing the empirical analysis, we divided the technical characteristics from the technology value perspective and the organizational factor from the technology control point based on many previous researches related to the factors affecting the technology leakage. A total of 12 related variables were selected for the two factors, and the analysis was performed with these variables. In this study, we use three - year data of "Small and Medium Enterprise Technical Statistics Survey" conducted by the Small and Medium Business Administration. Analysis data includes 30 industries based on KSIC-based 2-digit classification, and the number of companies affected by technology leakage is 415 over 3 years. Through this data, we conducted a randomized sampling in the same industry based on the KSIC in the same year, and compared with the companies (n = 415) and the unaffected firms (n = 415) 1:1 Corresponding samples were prepared and analyzed. In this research, we will conduct an empirical analysis to search for factors influencing technology leakage, and propose an early warning system through data mining. Specifically, in this study, based on the questionnaire survey of SMEs conducted by the Small and Medium Business Administration (SME), we classified the factors that affect the technology leakage of SMEs into two factors(Technology Characteristics, Organization Characteristics). And we propose a model that informs the possibility of technical infringement by using Support Vector Machine(SVM) which is one of the various techniques of data mining based on the proven factors through statistical analysis. Unlike previous studies, this study focused on the cases of various industries in many years, and it can be pointed out that the artificial intelligence model was developed through this study. In addition, since the factors are derived empirically according to the actual leakage of SME technology leakage, it will be possible to suggest to policy makers which companies should be managed from the viewpoint of technology protection. Finally, it is expected that the early warning model on the possibility of technology leakage proposed in this study will provide an opportunity to prevent technology Leakage from the viewpoint of enterprise and government in advance.

A Study on the Early Warning Model of Crude Oil Shipping Market Using Signal Approach (신호접근법에 의한 유조선 해운시장 위기 예측 연구)

  • Bong Keun Choi;Dong-Keun Ryoo
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.167-173
    • /
    • 2023
  • The manufacturing industry is the backbone of the Korean economy. Among them, the petrochemical industry is a strategic growth industry, which makes a profit through reexports based on eminent technology in South Korea which imports all of its crude oil. South Korea imports whole amount of crude oil, which is the raw material for many manufacturing industries, by sea transportation. Therefore, it must respond swiftly to a highly volatile tanker freight market. This study aimed to make an early warning model of crude oil shipping market using a signal approach. The crisis of crude oil shipping market is defined by BDTI. The overall leading index is made of 38 factors from macro economy, financial data, and shipping market data. Only leading correlation factors were chosen to be used for the overall leading index. The overall leading index had the highest correlation coefficient factor of 0.499 two months ago. It showed a significant correlation coefficient five months ago. The QPS value was 0.13, which was found to have high accuracy for crisis prediction. Furthermore, unlike other previous time series forecasting model studies, this study quantitatively approached the time lag between economic crisis and the crisis of the tanker ship market, providing workers and policy makers in the shipping industry with an framework for strategies that could effectively deal with the crisis.

Evaluation of Long-Term Seasonal Predictability of Heatwave over South Korea Using PNU CGCM-WRF Chain (PNU CGCM-WRF Chain을 이용한 남한 지역 폭염 장기 계절 예측성 평가)

  • Kim, Young-Hyun;Kim, Eung-Sup;Choi, Myeong-Ju;Shim, Kyo-Moon;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.671-687
    • /
    • 2019
  • This study evaluates the long-term seasonal predictability of summer (June, July and August) heatwaves over South Korea using 30-year (1989~2018) Hindcast data of the Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. Heatwave indices such as Number of Heatwave days (HWD), Heatwave Intensity (HWI) and Heatwave Warning (HWW) are used to explore the long-term seasonal predictability of heatwaves. The prediction skills for HWD, HWI, and HWW are evaluated in terms of the Temporal Correlation Coefficient (TCC), Root Mean Square Error (RMSE) and Skill Scores such as Heidke Skill Score (HSS) and Hit Rate (HR). The spatial distributions of daily maximum temperature simulated by WRF are similar overall to those simulated by NCEP-R2 and PNU CGCM. The WRF tends to underestimate the daily maximum temperature than observation because the lateral boundary condition of WRF is PNU CGCM. According to TCC, RMSE and Skill Score, the predictability of daily maximum temperature is higher in the predictions that start from the February and April initial condition. However, the PNU CGCM-WRF chain tends to overestimate HWD, HWI and HWW compared to observations. The TCCs for heatwave indices range from 0.02 to 0.31. The RMSE, HR and HSS values are in the range of 7.73 to 8.73, 0.01 to 0.09 and 0.34 to 0.39, respectively. In general, the prediction skill of the PNU CGCM-WRF chain for heatwave indices is highest in the predictions that start from the February and April initial condition and is lower in the predictions that start from January and March. According to TCC, RMSE and Skill Score, the predictability is more influenced by lead time than by the effects of topography and/or terrain feature because both HSS and HR varies in different leads over the whole region of South Korea.

Development Strategy of Smart Urban Flood Management System based on High-Resolution Hydrologic Radar (고정밀 수문레이더 기반 스마트 도시홍수 관리시스템 개발방안)

  • YU, Wan-Sik;HWANG, Eui-Ho;CHAE, Hyo-Sok;KIM, Dae-Sun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.191-201
    • /
    • 2018
  • Recently, the frequency of heavy rainfall is increasing due to the effects of climate change, and heavy rainfall in urban areas has an unexpected and local characteristic. Floods caused by localized heavy rains in urban areas occur rapidly and frequently, so that life and property damage is also increasing. It is crucial how fast and precise observations can be made on successful flood management in urban areas. Local heavy rainfall is predominant in low-level storms, and the present large-scale radars are vulnerable to low-level rainfall detection and observations. Therefore, it is necessary to introduce a new urban flood forecasting system to minimize urban flood damage by upgrading the urban flood response system and improving observation and forecasting accuracy by quickly observing and predicting the local storm in urban areas. Currently, the WHAP (Water Hazard Information Platform) Project is promoting the goal of securing new concept water disaster response technology by linking high resolution hydrological information with rainfall prediction and urban flood model. In the WHAP Project, local rainfall detection and prediction, urban flood prediction and operation technology are being developed based on high-resolution small radar for observing the local rainfall. This study is expected to provide more accurate and detailed urban flood warning system by enabling high-resolution observation of urban areas.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Analysis and Prediction of Behavioral Changes in Angelfish Pterophyllum scalare Under Stress Conditions (스트레스 조건에 노출된 Angelfish Pterophyllum scalare의 행동 변화 분석 및 예측)

  • Kim, Yoon-Jae;NO, Hea-Min;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.965-973
    • /
    • 2021
  • The behavior of angelfish Pterophyllum scalare exposed to low and high temperatures was monitored by video tracking, and information such as the initial speed, changes in speed, and locations of the fish in the tank were analyzed. The water temperature was raised from 26℃ to 36℃ or lowered from 26℃ to 16℃ for 4 h. The control group was maintained at 26℃ for 8 h. The experiment was repeated five times for each group. Machine learning analysis comprising a long short-term memory model was used to train and test the behavioral data (80 s) after pre-processing. Results showed that when the water temperature changed to 36℃ or 16℃, the average speed, changes in speed and fractal dimension value were significantly lower than those in the control group. Machine learning analysis revealed that the accuracy of 80-s video footage data was 87.4%. The machine learning used in this study could distinguish between the optimal temperature group and changing temperature groups with specificity and sensitivity percentages of 86.9% and 87.4%, respectively. Therefore, video tracking technology can be used to effectively analyze fish behavior. In addition, it can be used as an early warning system for fish health in aquariums and fish farms.

Condition Monitoring and Diagnosis of a Hot Strip Roughing Mill Using an Autoencoder (오토인코더를 이용한 열간 조압연설비 상태모니터링과 진단)

  • Seo, Myung Kyo;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.1
    • /
    • pp.75-86
    • /
    • 2019
  • Purpose: It is essential for the steel industry to produce steel products without unexpected downtime to reduce costs and produce high quality products. A hot strip rolling mill consists of many mechanical and electrical units. In condition monitoring and diagnosis, various units could fail for unknown reasons. Methods: In this study, we propose an effective method to detect units with abnormal status early to minimize system downtime. The early warning problem with various units was first defined. An autoencoder was modeled to detect abnormal states. An application of the proposed method was also implemented in a simulated field-data analysis. Results: We can compare images of original data and reconstructed images, as well as visually identify differences between original and reconstruction images. We confirmed that normal and abnormal states can be distinguished by reconstruction error of autoencoder. Experimental results show the possibility of prediction due to the increase of reconstruction error from just before equipment failure. Conclusion: In this paper, hot strip roughing mill monitoring method using autoencoder is proposed and experiments are performed to study the benefit of the autoencoder.

Two-Dimensional Model for the Prediction of Inundation Area in Urbanized Rivers (도시하천에서의 홍수범람도 작성을 위한 2차원 모형의 개발)

  • 한건연;박재홍
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.119-131
    • /
    • 1995
  • Two-dimensional diffusion and kinematic hydrodynamic models have been studied for preparing the flood inundation map. The models have been tested by applying to one-dimensional dam-break problem. The results have good agreements compared with those of dynamic wave model. The diffusion wave model produces the mass conservation error close to zero. Floodwave analyses for two-dimensional floodplain with obstruction and channel-floodplain show both stable and efficient results. The model presented in this study can be used for flood inundation map and flood warning system.

  • PDF