• 제목/요약/키워드: wall-frame

검색결과 552건 처리시간 0.024초

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Kambiz Cheraghi;Majid Darbandkohi;Mehrzad TahamouliRoudsari;Sasan Kiasat
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.443-454
    • /
    • 2023
  • Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

철근콘크리트 전단벽의 접합방식과 대각보강에 따른 내진성능 평가 및 개선 (Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Shear wall with Connection Types and Diagonal Reinforcement)

  • 신종학;하기주;안준석;주정준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권3호
    • /
    • pp.139-147
    • /
    • 1999
  • Six reinforced concrete shear wall, constructured with fully rigid, slit, and infilled types, were tested under both vertical and cyclic loadings. Experimental programs were carried out to evaluate the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility, under load reversals. All the specimens were modeled in one-third scale size. Based on the test results, the following conclusions can be made. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crushing due to slippage prevention of boundary region and reduction of diagonal tension rathar than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by l.14 times and l.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

철근콘크리트 내진벽의 구조성능 평가 및 개선 (Evaluation and Improvement of Structural Performance of Reinforced Shear Walls Under Load Reversals)

  • 신종학;하기주;안준석;주정준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.683-688
    • /
    • 1999
  • The purpose of this study is to develop and evaluate the structural performance of various shear walls, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crashing due to slippage prevention of boundary region and reduction of diagonal tension rather than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by 1.14 times and 1.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

심초음파에서 국소 좌심실벽 운동 추적을 위한 Color Kinesis 구현에 관한 연구 (Tracking Regional Left Ventricular Wall Motion With Color Kinesis in Echocardiography)

  • 신동규;김동윤;최경훈
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.579-582
    • /
    • 1997
  • The two dimnesional echocardiography is widely used to evaluate regional wall motion abnormaility, because of its abilities to depict left ventricluar wall motion. A new method, color kinesis is a technology or echocardiographic assessment of left ventricular wall motion. In this paper, we proposed a algorithm or color kinesis which is based on acoustic quantification and automatically detects endocardial motion during systole on a frame-by-frame basis. The echocardiograms were obtained in the short-axis views in normal subjects. Automated edge detection and endocardial contour tracing algorithm was applied to each frames, quantitative analysis based on segmentation was performed, and pre-defined color overlays superimposed on the gray scale images. Segmental analysis of color kinesis provided automated, quantitative diagnosis of regional wall motion abnormality.

  • PDF

전통 흙집 벽 재료의 특성 분석 (Analyses of Characteristics of the Wall Materials of Traditional Earthen Houses)

  • 리신호;송창섭;오무영
    • 한국농공학회지
    • /
    • 제43권1호
    • /
    • pp.102-105
    • /
    • 2001
  • This study has been done to investigate the characteristics of the wall materials of a earthen house ; the core-wall of a wood-frame house and the mud-wall of a all-wall house. A series of tests is carried out to study the physical properties of wall materials which are picked from existing earthen houses. The core-wall materials are composed of sandy soil or clayey soil with low plasticity. The mud-wall materials are sandy soil with well compaction effect. It is confirmed that the wall materials are common soils which are easily picked from the residential quarter.

  • PDF

철근콘크리트 전단벽-모멘트골조 형식 건물에 대한 마찰형 감쇠기 설치방식 비교연구 (Configurations of the Friction Dampers Installed in a Reinforced Concrete Shear Wall-Moment Frame System)

  • 박지훈;김길환
    • 한국지진공학회논문집
    • /
    • 제12권2호
    • /
    • pp.53-67
    • /
    • 2008
  • 본 연구에서는 전단벽-모멘트골조 시스템으로서 전단벽이 주로 횡력을 부담하는 철근콘크리트 건물을 대상으로 다양한 설치형식과 마찰력의 총량 및 분포를 갖는 마찰형 감쇠기의 제진보강 효과를 수치해석을 통해 비교 분석하였다. 감쇠기의 설치형식으로서 전단벽에 인접한 대각가새형, 벽체가 없는 골조를 보강하는 대각가새형 및 벽체 단부를 보강하는 수직경계요소형을 고려하였다. 하중기준 강화로 설계용보다 크게 증가한 지진하중에 대해 건물의 재료비선형성을 고려한 비선형시간이력해석을 수행하여 에너지소산, 횡하중 및 부재손상도 측면에서 마찰형 감쇠기의 제진성능을 비교 분석하였다. 기준마찰력의 30% 수준의 총마찰력을 갖는 벽체보강 대각가새형 설치형식이 전반적으로 가장 우수한 제진성능을 보이며,이 경우에 마찰력 배분방식은 중요하지 않았다. 또한 일부층에 집중설치함으로써 전층설치에 약간 못미치는 제진성능을 얻을 수 있었다.

스틸-알루미늄 복합 프레임을 갖는 커튼월의 내화성능에 관한 실험적 연구 (An Experimental Study on Fire Resistance Performance of Curtain-Wall System with Steel-Aluminum Hybrid Frame)

  • 이재승;임현창;조봉호;김흥열
    • 한국화재소방학회논문지
    • /
    • 제25권6호
    • /
    • pp.104-111
    • /
    • 2011
  • 현재까지 알루미늄은 커튼월의 프레임 재료로서 광범위하게 사용되어 왔다. 최근에 건축물의 초고층화와 더불어 커튼월의 프레임 재료로서 알루미늄에 비해 강도와 열 저항능력이 큰 스틸에 대한 관심이 증가하고 있다. 본 연구에서는 알루미늄 커튼월과 스틸-알루미늄 복합 커튼월에 대한 내화성능을 EN 13830에 근거하여 차염성, 차열성 및 복사열 차단성능에 대하여 평가하였다. 실험결과, 알루미늄 커튼월에 비해 스틸-알루미늄 복합 프레임 커튼월의 차염성능은 15분, 복사열에 대한 성능은 13분 상향 평가되었다. 프레임의 붕괴는 스틸-알루미늄 복합 프레임의 경우 36분, 알루미늄 커튼월의 경우 13분이었으나, 차열성능은 내화유리의 온도에 의해 모두 6분으로 평가되었다.

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.

한국 현대건축의 기술역사에 관한 연구 (A Study on the History of Technology in Korean Modern Architecture)

  • 정인하;김진
    • 건축역사연구
    • /
    • 제9권3호
    • /
    • pp.51-69
    • /
    • 2000
  • This study tries to analyze the development of architectural technologies appeared in several tall buildings and large spatial structures from 1955 to 1999 in Korea. We suppose that these buildings represent the development of technology in Korean modern architecture. By the detailed analysis of these buildings, we can arrive at a conclusion as such; During the years 1955-1999, there existed a great changement in the eighties. We can find this fact very well in the domain of structural system and curtain wall system. In large spatial structures, the structural-system of shell and steel truss dome was replaced by that of space frame, space truss and cable truss with membrane. In tall building, the structural system of rigid frame and shear wall was replaced by tubular system, core and outrigger system. Korean architects introduced the aluminum curtain wall in the sixties, but its low technological level caused many problems in reality. Therefore, precast concrete curtain wall appeared from seventies as the main method for an outer wall in tall building. With the augmentation of height after 1980, PC curtain wall was replaced by the aluminum curtain wall of unit type and structural glass wall system. These systems help to stress the transparency in a tall building.

  • PDF

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.