• Title/Summary/Keyword: wall-frame

Search Result 556, Processing Time 0.031 seconds

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi;Kanat Burak Bozdogan
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.353-364
    • /
    • 2023
  • In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.

Practical Design Method for Coupling Beams of Tall Buildings with Dual Frame System (이중골조형식 고층건물 커플링보의 실용설계)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.525-532
    • /
    • 2014
  • In this study, practical design method of coupling beams is proposed. The member forces varies according to the location of the members and the members at 25%~40% of building height shows large member forces. The 100mm increase of wall thickness causes 3~4% variation of member forces and the 100MPa increase of concrete strength decrease approximately 3% of member forces. The required strength of coupling beams is twice the resistant strength and 80% reduction of coupling beam stiffness is necessary to fulfill the design criteria. The stiffness reduction of coupling beams is not necessary over the entire stories and the strength reduction range can be estimated considering design requirements.

Fatigue Fracture Assessment of Honeycomb Composite Side-Wall Panel Joint for the KTX Tilting Car Body (틸팅차량용 KTX 차체의 하니컴복합재 측벽판 체결부의 피로파괴평가)

  • Jeong, Dal-Woo;Kim, Jung-Seok;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • The honeycomb composite joint structure designed for application to a tilting KTX railroad car body is subjected to bending loads of a cantilever type. Honeycomb sandwich composite panel-joint attached in the real tilting car body was fabricated and sectioned as several beam-joint specimens for the bending test. The fracture behaviors of these specimens under static loads were different from those under cyclic loads. Static bending loads caused shear deformation and fracture in the honeycomb core region, while fatigue cyclic bend loading caused delamination along the interface between the composite skin and the honeycomb core, and/or caused a fracture in the welded part jointed with the steel under-frame. These fracture behaviors could occur in other industrial honeycomb composite joints with similar sub-structures, and be used for improving design parameters of a honeycomb composite joint structure.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cement Composite (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽판의 내진성능)

  • Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu;Jang, Gwang-Soo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.89-92
    • /
    • 2008
  • The seismic behavior of the lightly reinforced concrete frames (LRCFs) was controlled by the nonductile behavior of the critical regions. These critical regions require retrofit to improve the seismic behavior of the lightly reinforced concrete frames. Critical column end regions must be retrofit to increase the global ductility capacity. The objective of this research is to evaluate structural strengthening performance of lightly reinforced concrete frame with Strain hardening cement composite(SHCC) experimentally. The experimental investigation consisted of a cyclic load tests on 1/3-scale models of precast infill walls. Reinforcement detail of infill wall was variables in the experiment. The experimental results, as expected, show that the multiple crack pattern, strength, ductility and energy dissipation capacity are superior for specimen with SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

  • PDF

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper (더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가)

  • Hur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Kim, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.10-17
    • /
    • 2015
  • In this study, to examine seismic reinforcement effect of a school building constructed prior to application of seismic design, a Double I-type damper supported by wall was installed to perform comparative analysis on existing non-seismic designed RC frame. As a result of experiment, while non-seismic designed specimen showed rapid reduction in strength and brittle shear destruction as damages were focused on top and bottom of left and right columns, reinforced specimen showed hysteretic characteristics of a large ellipse with great energy absorption ability, exhibiting perfectly behavior with increased strength and stiffness from damper reinforcement. In addition, as a result of comparing stiffness reduction between the two specimens, specimen reinforced by shear wall type damper was effective in preventing stiffness reduction. Energy dissipation ability of specimen reinforced by Double I-type damper was about 3.5 times as high as energy dissipation ability of non-reinforced specimen. Such enhancement in energy dissipation ability is considered to be the result of improved strength and deformation.

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.

Evaluation of the Heat Conduction Model of Concrete Ground on Which LN2 Non-Spreading Pool Forms (비확산 액체질소 풀이 형성된 콘크리트 판의 열전도 모델 평가)

  • KIM, MYUNGBAE;NGUYEN, LE-DUY;CHUNG, KYUNGYUL;HAN, YONGSHIK;CHO, SUNGHOON
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.365-373
    • /
    • 2021
  • In this study, evaporation of LN2 non-spreading pool on concrete plate was dealt with experimentally. The thermophysical properties of concrete, which is a composite material, were obtained by minimizing the difference between the numerical analysis results obtained from the assumed properties and the results from experiments. The thermal energy required for evaporation of the liquid pool is supplied from the concrete plate and the wall of the container. As a result of the measurement, the thermal energy flowing in from the wall was negligible compared to the one supplied from the concrete plate. It was found that the measured evaporation rate of the liquid pool by the heat energy supplied through the concrete plate agrees well with the PTC model except for the initial section of the experiment. The validity of the semi-infinite assumption and the one-dimensional assumption, which are the main conditions of the PTC model, was also verified through experiments. The evaporation rate model in the non-spreading pool discussed in this study can provide a basic frame for the one in the spreading pool, which is a meaningful result considering that the spreading pool is very realistic compared to the non-spreading pool.

Behavior of C-Shaped Beam to Square Hollow Section Column Connection in Modular Frame (모듈러 골조의 각형강관 기둥과 C형강 보 접합부의 거동 평가)

  • Lee, Sang Sup;Park, Keum Sung;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.471-481
    • /
    • 2015
  • Modular building is a prefabricated construction system for building where factory-produced pre-engineered modular units are delivered to site and assembled as substantial elements of a building. There are two basic kinds of modular structures. One is a load-bearing wall structure designed to transfer the load through longitudinal walls. The other is a frame structure composed of columns and beams. For frame structure, square hollow section is often used as a column member and channel as a beam member in modular unit. Lower and upper modules are fasten with bolts via a pre-installed access hole in the SHS column. However, the access holes can weaken the panel zone that would affect the behavior of beam to column connection. The 5 specimens of beam to column connections with parameters of access hole, column thickness and diaphragm were made and this paper describes the test results.

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 지진거동 평가)

  • Ko, Hyun;Kim, Hyun-Su;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.13-22
    • /
    • 2010
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

A Study on the Meaning of Cubic Form by Salvador Dali - Focus on Salvador Dali's Work 'A Propos of the Treatise on Cubic Form by Juan de Herrera, 1960' - (살바도르 달리 입방체의 의미에 관한 연구 - 살바도르 달리의 작품 '후안 데 에레라의 입방체 연구에 대한 서문, 1960'을 중심으로 -)

  • Kim, Sung-Hye
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.6
    • /
    • pp.145-152
    • /
    • 2011
  • Salvador Dali put a title of his work as 'A Propos of the Treatise on Cubic Form by Juan de Herrera' at 1960. Through this work which is consisted in cube frame surrounding black and white letter squares and nails in the sky, he directly referred about the cube which were showed in his pictures. To understand the meaning of this work, Dali's paintings and Juan de Herrera's design and architectural ideas are analysed by building. His concerning about absolute existence like god and nuclear takes the cubic form by Juan de Herrera instead of pictorial tendencies of Cubism, however pictorial elements such as sky and nails were still used in the work. He use alphabet letter as pattern consisting wall and symbol representing 'Juan de Herrera', moreover number '2' is taken to show up line attribute. Dali had several design develop process, and finally he reached an new stage called 'Hypercube'. Hypercube can distinguish from Cubism and Herrera's architectural idea, and it will be free from objective world based in Euclid geometry. Although cubic is the simplest shape. It can contain the variety of developments in these fields - philosophy, architecture, painting and etc.- from Platon to nuclear physics and coexists in a picture of Salvador Dali.