• 제목/요약/키워드: wall to wall

검색결과 15,040건 처리시간 0.045초

급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구 (A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle)

  • 김경훈;황경모;진태은
    • 한국시뮬레이션학회논문지
    • /
    • 제14권2호
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF

난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(I)-시간 평균된 공간-시간 상관관계의 분석- (Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(I) -Analysis of Long-Time Averaged Space-Time Correlation-)

  • 양준모;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.140-152
    • /
    • 1997
  • A simultaneous measurement of the wall skin friction and near-wall streamwise velocity fluctuations is performed using hot film and hot wire anemometers to investigate the relation between them. Near-wall turbulence statistics measured with a hot-wire probe are in good agreement with previous results. Turbulence properties of the wall skin friction fluctuations measured with a hot film also show fairly good agreements with those measured by others except that rms level is lower in the present study. Long-time averaged space- time correlations show that the wall skin friction is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction. Tilting angles are obtained from the phase shifts between the wall skin-friction and streamwise velocity fluctuations. The convection velocity of the near-wall streamwise velocity obtained from the space-time correlation is in good agreement with that from the direct numerical simulation database.

Seismic behavior of steel frames with replaceable reinforced concrete wall panels

  • Wu, Hanheng;Zhou, Tianhua;Liao, Fangfang;Lv, Jing
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1055-1071
    • /
    • 2016
  • The paper presents an innovative steel moment frame with the replaceable reinforced concrete wall panel (SRW) structural system, in which the replaceable concrete wall can play a role to increase the overall lateral stiffness of the frame system. Two full scale specimens composed of the steel frames and the replaceable reinforced concrete wall panels were tested under the cyclic horizontal load. The failure mode, load-displacement response, deformability, and the energy dissipation capacity of SRW specimens were investigated. Test results show that the two-stage failure mode is characterized by the sequential failure process of the replaceable RC wall panel and the steel moment frame. It can be found that the replaceable RC wall panels damage at the lateral drift ratio greater than 0.5%. After the replacement of a new RC wall panel, the new specimen maintained the similar capacity of resisting lateral load as the previous one. The decrease of the bearing capacity was presented between the two stages because of the connection failure on the top of the replaceable RC wall panel. With the increase of the lateral drift, the percentage of the lateral force and the overturning moment resisted by the wall panel decreased for the reason of the reduction of its lateral stiffness. After the failure of the wall panel, the steel moment frame shared almost all the lateral force and the overturning moment.

Characterization of Cell Wall Proteins from the soo1-1/ret1-1 Mutant of Saccharomyces cerevisiae

  • Lee, Dong-Won;Kim, Ki-Hyun;Chun, Se-Chul;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제40권3호
    • /
    • pp.219-223
    • /
    • 2002
  • In order to investigate the function of Soo1p/${\alpha}$-COP during post-translational modification and intra-cellular transport of cell wall proteins in Saccharomyces cerevisiae, cell wall proteins from the soo1-1/ret1-1 mutant cells were analyzed. SDS-PAGE analysis of biotin labeled cell wall proteins suggested that the soo1-1 mutation impairs post-translational modification of cell wall proteins, such as N- and/ or Ο-glycosylation. Analysis of cell wall proteins with antibodies against ${\beta}$-1,3-glucan and ${\beta}$-1,6-glucan revealed alteration of the linkage between cell wall proteins and ${\beta}$-glucans in the soo1-1 mutant cells. Compositional sugar analysis of the cell wall proteins also suggested that the soo1-1 mutation impairs glycosylation of cell wall protein in the ER, which is crucial for the maintenance of cell wall integrity.

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

프리캐스트 중간전단벽 시스템이 사용된 콘크리트 산업 시설물의 내진 및 방폭설계 (Seismic and Blast Design of Industrial Concrete Structures with Precast Intermediate Shear Wall System)

  • 이원준;김민수;김선훈;이득행
    • 한국지진공학회논문집
    • /
    • 제28권2호
    • /
    • pp.93-101
    • /
    • 2024
  • Code-compliant seismic design should be essentially applied to realize the so-called emulative performance of precast concrete (PC) lateral force-resisting systems, and this study developed simple procedures to design precast industrial buildings with intermediate precast bearing wall systems considering both the effect of seismic and blast loads. Seismic design provisions specified in ACI 318 and ASCE 7 can be directly adopted, for which the so-called 1.5Sy condition is addressed in PC wall-to-wall and wall-to-base connections. Various coupling options were considered and addressed in the seismic design of wall-to-wall connections for the longitudinal and transverse design directions to secure optimized performance and better economic feasibility. On the other hand, two possible methods were adopted in blast analysis: 1) Equivalent static analysis (ESA) based on the simplified graphic method and 2) Incremental dynamic time-history analysis (IDTHA). The ESA is physically austere to use in practice for a typical industrial PC-bearing wall system. Still, it showed an overestimating trend in terms of the lateral deformation. The coupling action between precast wall segments appears to be inevitably required due to substantially large blast loads compared to seismic loads with increasing blast risk levels. Even with the coupled-precast shear walls, the design outcome obtained from the ESA method might not be entirely satisfactory to the drift criteria presented by the ASCE Blast Design Manual. This drawback can be overcome by addressing the IDTHA method, where all the design criteria were fully satisfied with precast shear walls' non-coupling and group-coupling strength, where each individual or grouped shear fence was designed to possess 1.5Sy for the seismic design.

Settlement Reduction Effect of Advanced Back-to-Back Reinforced Retaining Wall

  • Koh, Taehoon;Hwang, Seonkeun;Jung, Hunchul;Jung, Hyuksang
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.107-111
    • /
    • 2013
  • In order to constrain the railway roadbed settlement which causes track irregularity, and thus threats running stability and ride quality, advanced Back-to-Back (BTB) reinforced retaining wall was numerically analyzed as railway roadbed structure. This study is intended to improve conventional Back-to-Back reinforced retaining wall as the technology which would reduce the roadbed settlement in a way of constraining the lateral displacement of its prestressed vertical facing and inducing arching effects in roadbed (backfill) placed between masonry diaphragm wall and vertical facing. As a result of numerical analysis, it was found that the roadbed settlement was reduced by 10% due to the prestressed vertical facing and embedded masonry diaphragm wall of the advanced Back-to-Back reinforced retaining wall system.

Ultrastructure of the Cell Wall of a Null Pigmentation Mutant, npgA1, in Aspergillus nidulans

  • Chung, Yun-Shin;Kim, Jung-Mi;Han, Dong-Min;Chae, Keon-Sang;Jahng, Kwang-Yeop
    • Journal of Microbiology
    • /
    • 제41권3호
    • /
    • pp.224-231
    • /
    • 2003
  • The null pigmentation mutant (npgA1) of Aspergillus nidulans was previously characterized by its production of no pigment at any stage of its life cycle, its reduction in hyphal branching, and its delay in the asexual spore development. The chemical composition of the cell wall was also altered in npgA1 mutants that became more sensitive to Novozyme 234$\^$TM/, which is possibly due to a structural defect in the cell wall. To investigate the effects of the cell wall structure on these pleiomorphic phenomena, we examined the ultrastructure of the cell wall in the npgA1 mutant (WX17). Scanning electron micrographs (SEM) showed that after being cultured for six days, the outermost layer of the conidial wall of WX17 peeled off. Although this phenotype suggested that the cell wall structure in WX17 may be modified, examination using TEM of the fine structure of cross-sectioned hyphal wall of WX17 did not show any differences from that of FGSC4. However, staining for carbohydrates of wall layers showed that the electron-translucent layer of the cell wall was missing in WX17. In addition, the outermost layer H1 of the hyphal wall was also absent in WX17. The ultrastructural observation and cytochemical analysis of cell walls suggested that the pigmentation defect in WX17 may be attributed to the lack of a layer in the cell wall.

슬립폼 공법으로 건설된 벽식 구조의 거동에 관한 연구 (Structural Behavior of Wall-Type Structure with the Application of Slip-Form System)

  • 문정호;이리형
    • 콘크리트학회지
    • /
    • 제7권4호
    • /
    • pp.157-168
    • /
    • 1995
  • Slip-Form시스템을 사용하였을 때 공기단축 및 우수한 품질의 벽체타설이 가능하기 때문에, 그 적용성 및 구조적 거동을 평가하는 연구가 수행되었다. 그러나 슬래브를 벽체와 동시에 타설할 수 없기 때문에 벽체-슬래브 접합부의 주변에 취약점이 생기게 될 가능성이 있으므로, 본 연구는 Slip-Form시스템을 사용한 벽식 구조의 성능을 평가하고, 효과적인 접합부를 개발하는 것을 목적으로 하였다. 이를 위하여 7개의 벽체 실험체와 8개의 벽체-슬래브 접합부 실험체를 제작하여 실험을 실시하였다. 그리고 실험결과들을 설계식 및 이론적인 해석 결과와도 비교하였다. 벽체압축 실험으로부터 그 구조적 거동이 일체식 구조와 유사함을 알 수 있었으며, 벽체-슬래브 접합부 실험으로 부터는 철근연결용 철물이 있는 경우는 제외하고는 좋은 성능을 나타냄을 알 수 있었다. 그러나 외벽에 철근연결용 철물을 사용한 경우에는 벽체의 강도을 검토하여 설계에 반영하여야 함을 알 수 있었다.

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.