프리캐스트 중간전단벽 시스템이 사용된 콘크리트 산업 시설물의 내진 및 방폭설계

Seismic and Blast Design of Industrial Concrete Structures with Precast Intermediate Shear Wall System

이원준¹⁾ · 김민수²⁾ · 김선훈²⁾ · 이득행³⁾*

Lee, Won-Jun¹⁾ · Kim, Min-Su²⁾ · Kim, Seon-hoon²⁾ · Lee, Deuckhang³⁾*

/ ABSTRACT /

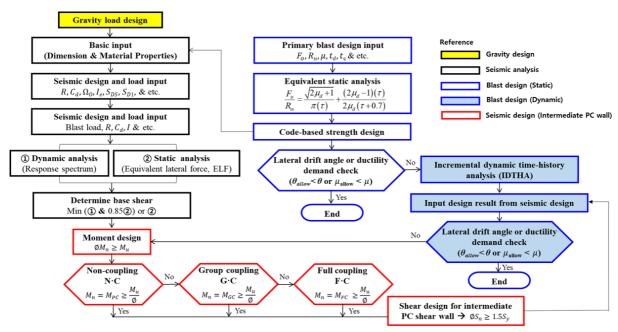
Code-compliant seismic design should be essentially applied to realize the so-called emulative performance of precast concrete (PC) lateral force-resisting systems, and this study developed simple procedures to design precast industrial buildings with intermediate precast bearing wall systems considering both the effect of seismic and blast loads. Seismic design provisions specified in ACI 318 and ASCE 7 can be directly adopted, for which the so-called $1.5S_y$ condition is addressed in PC wall-to-wall and wall-to-base connections. Various coupling options were considered and addressed in the seismic design of wall-to-wall connections for the longitudinal and transverse design directions to secure optimized performance and better economic feasibility. On the other hand, two possible methods were adopted in blast analysis: 1) Equivalent static analysis (ESA) based on the simplified graphic method and 2) Incremental dynamic time-history analysis (IDTHA). The ESA is physically austere to use in practice for a typical industrial PC-bearing wall system. Still, it showed an overestimating trend in terms of the lateral deformation. The coupling action between precast wall segments appears to be inevitably required due to substantially large blast loads compared to seismic loads with increasing blast risk levels. Even with the coupled-precast shear walls, the design outcome obtained from the ESA method might not be entirely satisfactory to the drift criteria presented by the ASCE Blast Design Manual. This drawback can be overcome by addressing the IDTHA method, where all the design criteria were fully satisfied with precast shear walls' non-coupling and group-coupling strength, where each individual or grouped shear fence was designed to possess $1.5S_y$ for the seismic design.

Key words: Blast design, Seismic design, Precast concrete, Intermediate precast shear wall, Bearing wall, Dynamic analysis

1. 서 론

건축물 안전을 위해서 중력하중과 더불어 필수적으로 횡력에 대한 안전성이 확보될 수 있도록 설계되어야 하며, 산업구조물에서는 건설주체(또는 건축주)의 요구에 의해서 폭발사고로 발생되는 방폭하중에 대한 안전성 설계가 추가적으로 요구될 수 있다. 일반적인 건축물의 설계과정은 설계하중을 산정하는 것으로 시작되어 이를 바탕으로 구조해석을 수행하고, 이후 설계강도 및 사용성 검토의 순서로 설계를 완료한다. 이번 연구는 국내 건설사가 최

근들어 해외(중동지역)에서 수주하여 수행되는 산업구조물 프로젝트를 대 상으로 하였으며, 주로 프리캐스트 콘크리트(Precast concrete, PC) 내력벽 시스템을 주요 횡력저항시스템으로 사용한다. 이들에 대한 내진설계는 현행설계기준(ACI 318-19[1], ASCE 7-22[2])에서 제시하고있는 내진설계상세를 추가적으로 만족시켜야하지만 앞서 설명된 것과 같이 방폭설계는 건축주의 추가적인 필요에 의하여 수행되는 것이 일반적이다. 내진설계는 현행설계기준에서 제시하고 있는 반응수정계수(Response modification factor, R factor)에 따라 다른 정도의 설계상세가 요구된다. 이 연구에서 적용된 프리캐스트 중간 전단벽은 항복하지 않는 접합부에 대하여 위험단면에서 항복시 공칭강도의 1.5배 이상(소위 1.5S_y 조건)에 해당되는 초과강도를 도입하여 설계하여야한다. 여기서 S_v는 구조물의 부재가 항복하는 강도


*Corresponding author: Lee, Deuckhang

E-mail: dk@cbnu.ac.kr

(Received November 6, 2023; Revised November 27, 2023; Accepted November 28, 2023)

¹⁾충북대학교 건축공학과 박사과정, ²⁾충북대학교 건축공학과 공학석사, ³⁾충북대학교 건축공학과 교수

¹⁾Ph, D, Student, Dept, of Architectural Engineering, Chungbuk National University, ²⁾Former Master' Student, Dept, of Architectural Engineering, Chungbuk National University, ³⁾Professor, Dept. of Architectural Engineering, Chungbuk National University

Note. R:response modification factor, C_d :displacement amplification coefficient, Ω_c :overstrength factor, I_c :Importance Factor, S_{DS} :design spectral response acceleration at short periods, S_D :design spectral response acceleration at 1-sec period, μ ductility, E:rotation

Fig. 1. Design process for blast load and seismic load

를 의미하며, 보통은 위험단면에서 공칭휨강도로 정의될 수 있으며, 이에 따라서 해당단면의 설계전단력과 다른 모든위치의 휨 및 전단강도는 위험 단면의 공칭휨강도에서 산정된 전단력의 1.5배에 대하여 설계강도가 만족 될 수 있도록 설계되어야 하는 것이다. 중간 프리캐스트 전단벽의 항복하지 않는 접합부는 역량설계법(Capacity design method)에 근거하고 있으며, 위험단면에서 철근이 항복하는 순간에 위험단면에 위치하는 접합철물(기 계적이음 장치 등) 및 전단연결재를 포함하여 위험단면 외에 모든 위치에서 접합부가 항복하지 않도록 설계되어야 한다. 다만, 방폭설계는 필수적이라 기 보다는 프로젝트의 성격과 중요도에 따라서 선택적으로 수행되며, 이에 따라서 방폭설계를 위한 별도의 접합부설계상세를 요구하지 않는다. 즉, 특 정 폭발하중까지는 내진설계에 도입된 초과강도(즉, 1.55)와 방폭설계시 사용되는 재료강도증진계수로 인하여 물량증가가 예상되지 않음을 의미한 다. Fig. 1은 중력 하중과 더불어 두 가지 횡력(지진하중 및 폭발하중)에 대 한 설계프로세스를 요약하였으며, 이 연구의 목표는 프리캐스트 콘크리트 산업 구조물 중에서 내력벽 시스템에 대하여 내진설계와 방폭설계가 복합 적으로 수행되는 설계 프로세스를 명확하게 하여 현행실무에서 즉각적으 로 대응하는 것을 목표로 설정하였다. 이를 위해 총 4가지의 폭발하중크기 (0 psi, 3 psi, 5 psi, 7 psi)를 변수로 하였으며, 각각의 폭발에 의한 과도압력 (Overpressure)의 크기는 중동현지에서 범용적으로 사용되고 있는 위험도 레벨을 선정한 것이며, 하중의 유효시간은 100 msec(milliseconed)로 가정 하였다. 이는 각각 무위험도(No risk, 0 psi), 낮은위험도(Low risk, 3 psi), 보통위험도(Moderate, 5 psi) 및 고위험도(High risk, 7 psi)로 정의되며, 각 각 Case 1, Case 2, Case 3 및 Case 4로 지칭하였다. 이 연구에서는 내진설 계된 프리캐스트 콘크리트 건물에 대한여 위에 4가지 위험도 레벨에 대하 여 방폭설계(또는 방폭성능평가)를 수행하였고, 다양한 PC 중간전단벽 내 진상세가 방폭성능에 미치는 영향을 정량적으로 평가하고자 하였다.

이 연구에서는 먼저 PC 중간전단벽 시스템에 대하여 내진설계를 수행

하고, 비교적 간략한 방법인 미리 구축된 차트(Chart)에 기반한 방폭하중 에 대한 등가정적해석(Equivalent static analysis, ESA) 및 방폭하중에 대한 등가단자유도(Equivalent Single degree-of-freedom) 모델에 기반 한 비탄성동적시간이력해석(Incremental dynamic time-history analysis, IDTHA)을 수행하여 그 결과를 비교하고, 목표성능의 만족여부를 평가하 였다. 각각의 폭발하중크기(0 psi, 3 psi, 5 psi, 7 psi)에 대해서 부재의 대략 적인 전단벽의 두께 및 주철근량을 산정하기 위하여 ASCE Manual 42[3] 및 Paz[4]에서 제안된 설계식을 근거로 1차 설계를 수행하였고, 여기서 기 초와PC 벽체를 연결하는 주철근량은 기계적이음이 적용된 것으로 간주하 고 ACI 318-19의 2.9절에 제시된 전단마찰강도를 사용하여 결정하였다. 지진하중에 대한 구조해석은 현행실무에서 가장 일반적으로 사용되는 응답 스펙트럼(Response spectrum, RS)해석과 등가정적해석(Equivalent lateral force, ELF)을 수행하였고, 이에 대한 구조설계를 완료하였다. 방폭설계에 서 등가정적해석(ESA)과 동적해석방법(IDTHA)을 통해 산정된 구조물 의 횡변위는 ASCE Manual 42에서 제시하고있는 허용연성도 또는 허용변 위각에 대하여 검토하였다. Fig. 2는 대상건물의 상세를 보여주고 있다. 건 물의 길이방향(Longitudinal direction)과 횡방향(Transverse direction) 의 폭은 각각 75 m 및 15 m이며, 높이는 6.9 m이다. 횡력저항시스템은 외 부를 둘러쌓고 있는 PC 내력벽이며, 각 PC 전단벽(패널)은 폭과 높이가 각 각2.5 m 및 6.9 m이고, 각 설계폭발압력에 대하여 동일한 두께를 사용하여 설계하였다. Fig. 2에서 나타낸 바와 같이 길이방향은 출입구를 포함한 다 수의 개구부(Opening)을 제외하면 총 22개의 PC 전단벽으로 이루어져 있 고, 횡방향은 개구부가 없이 6개의 PC 전단벽으로 구성된다. 길이방향으로 는 많은 수의 면내전단벽이 있으므로 PC 벽과 벽사이에 어떠한 내진상세도 도입되지 않았다(즉, 비합성벽체, Non-coupled shear wall system). 다만, 횡방향으로는 면내전단강도가 부족할 경우를 대비하여 비합성벽체 뿐만아 니라2개벽을1개의 벽으로 합성시킨 군집합성벽체(Group-coupled shear

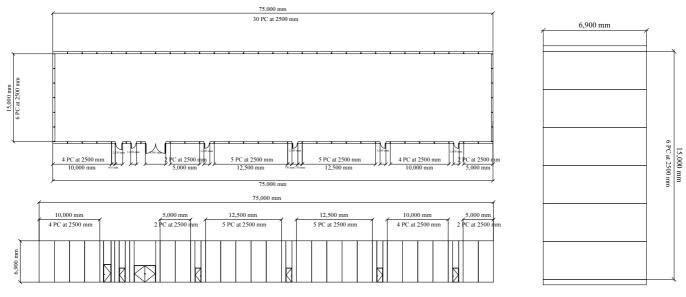


Fig. 2. Precast concrete design target building

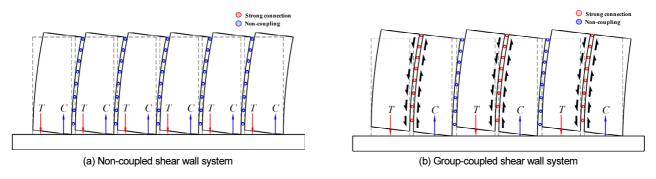
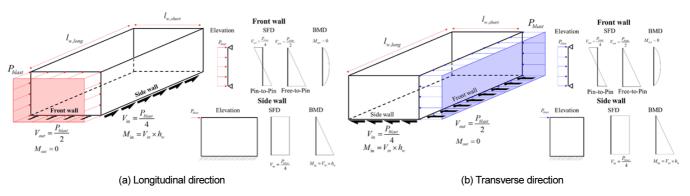
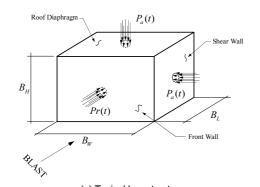
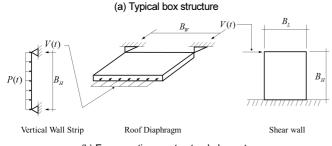


Fig. 3. Type of coupled shear wall system




Fig. 4. Blast load depending on direction


wall system)로 설계하여 횡변형성능을 높이고자 하였고, Fig. 3은 이에 대한 개념을 간략하게 보여주고 있다.

2. 하중산정

2.1 폭발하중산정(등가정적해석)

방폭설계에서 하중은 폭발압의 입사효과뿐만 아니라 파동의 반사효과 를 반드시 고려하여야한다. 실무설계에서 가장 널리 사용되고 있는 ASCE Manual 42에서는 폭발하증을 산정하기위한 비교적 단순화된 설계식들을 제시하고 있으며, 이 연구에서는 이를 적극 활용하였다. Fig. 4은 폭발하증의 방향에 따른 하중 특성과 벽체의 거동을 나타내고 있다. 건물의 길이방향과 평행한 방향으로 하중이 작용하는 경우[Fig. 4(a) 참조], 횡방향 PC 벽체는 정면벽체(Front wall)가 되며, 횡 방향 벽체는 측면벽체(Side wall)가 된다. 그와 반대로 건물의 횡방향과 평행한 방향으로 하중이 작용하면[Fig. 4(b) 참조] 길이방향 PC 벽체는 정면벽체, 횡방향 PC 벽체는 측면벽체가 된다. Fig. 5은 ASCE Manual 42에서 제시하고 있는 폭발하중이 작용하였을 때 정면벽체에서 바닥시스템(다이아프램) 및 측면벽체로 전달되는 하중전단

(b) Forces acting on structural elements

Fig. 5. Behavior of blast load on structure

때커니즘을 설명하고 있다. Fig. 5에 나타낸 바와 같이 벽체가 폭발하증이 정면벽체에 작용되는 경우, 지붕층 및 바닥판 그리고 기초가 지점역활을 수 행하며, 보통 면외전도모멘트에 대해서는 벽체-기초 접합부는 핀조건(Pin condition)으로 가정된다. 따라서, 정면벽체는 양 지점이 핀(Pin-to-pin)으로 지지되는 단순지지조건으로 가정될 수 있다. 이로 인해 폭발하증은 양쪽 지점으로 반반씩전달된다[Fig. 5(b) 참조]. 이 때 바닥판의 다이아프램작용에 의하여 측면벽체에 면내전단력을 전달한다. ASCE Manual 42에서는 폭발하증을 단순화하여 삼각형 형태의 하증을 제시하였다. 폭발하증에서 가장 주요한 요인은 반사압이 고려된 최대설계폭발압력이다. 앞서 언급된 바와 같이 파동의 반사효과로 인해 폭발하증의 최대하증은 반사계수를 통해 산정된다. ASCE Manual 42에서는 반사효과로 증폭되는 하중을

$$P_r = C_r P_{so} \tag{1}$$

$$C_r = (2 + 0.0073P_{so}) \tag{2}$$

으로 제시하고 있다. 여기서, P_r 은 최대반사압(Peak reflected pressure), C_r 은 반사계수(Reflection coefficient), P_{so} 은 최대측면과도압력(Peak side-on overpressure)을 의미한다. Fig. 6(a)는 정면벽체에 작용하는 면외 방향 폭발하중을 보여주고 있다. 삼각형 형태의 이선형 압력곡선(Bilinear pressure-time curve)으로 이상화되며, 아래와 같이 등가하중(Equivalent loading)으로 산정할 수 있다.

$$P_s = P_{so} + C_d q_o \tag{3}$$

$$q_{\rm a} \approx 0.0032 P_{\rm a}^{-2} \tag{4}$$

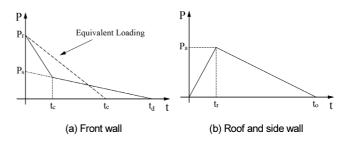


Fig. 6. Type of explosion load by member

$$t_c = 3S/U < t_d \tag{5}$$

$$U = 345(1 + 0.0083P_{so})^{0.5} \tag{6}$$

$$I_{w} = 0.5(P_{r} - P_{s})t_{c} + 0.5P_{s}t_{d} \tag{7}$$

$$t_{e} = 2I_{w}/P_{r} = (t_{d} - t_{e})P_{s}/P_{r} + t_{e}$$
(8)

여기서, C_d 는 드래그 계수(Drag coefficient)이고, 정면벽체의 경우에는 1.0, 측면벽체, 배면벽체 및 지붕슬래브에 대해서는 -0.4를 적용한다. S는 압력을 받는 방향에서 구조물의 높이와 폭의 절반값중 최소값을 취하고, t_d 는 $100 \, \mathrm{msec}$ 으로 설정하였다.

Fig. 6(b)는 측면벽체와 지붕층에 작용하는 면외방향 폭발하중 시간이력을 보여주고 있으며, 이는

$$P_a = C_e P_{so} + C_d q_o \tag{9}$$

앞서 언급된 바와 같이 이 연구에서는 초기설계를 위한 폭발하중을 가정되었으며, ASCE Manual 42에서는 단자유도 이상화를 통하여 다수의 비선 형동적해석을 수행하였고 이를 바탕으로

$$\frac{F_o}{R_m} = \frac{\sqrt{2\mu_d + 1}}{\pi(\tau)} + \frac{(2\mu_d + 1)(\tau)}{2\mu_d + 1(\tau + 0.7)}$$
(10)

을 유도하였다. 여기서, μ 는 건물의 요구연성도, τ 는 건물의 주기와 폭발하중 지속시간의 비율(t_d/t_n), F_o 은 폭발하중의 크기, R_m 은 대상건물의 저항 성능의 크기를 의미한다. 식(10)을 통하여 요구강도 R_m 을 산정할 수 있으며, 이를 위해서는 요구연성도(μ)를 가정해야 한다. 요구연성도는 ASCE Manual에서 다이아프램이 있는 전단벽시스템의 허용연성도인 3.0을 설정하였다(Tables 5 및 6 참고). 이를 통해 산정된 기초- 벽체 접합부에서 설계하중을 Table 1에 나타내었고, Case 1(0 psi)의 경우 벽체의 두께는 300 mm로 나타났으며, Case 2(3 psi), Case 3(5 psi) 및 Case 4(7 psi)는 각각 350 mm, 400 mm 및 450 mm으로 결정되었다.

Table 1은 모든 Case(Case 1~4)와 방향(길이방향 및 횡방향)에 따른 폭발하중을 산정하여 요약한 것이다. 이때 산정된 하중은 정면벽체에서 작용되는 하중의 1/2이 측면벽체의 전단력으로 전달된다(Fig. 4 참조). Table 1에서 나타낸바와 같이 폭발하중이 길이방향과 평행하면 측면 벽체보다 정

Table 1. Summary of dominant design forces under blast loads

Blast Load	Design forces	_	udinal ction*		verse ction*
[psi]		Front wall	Side wall	Front wall	Side wall
	M_{out} , [kN·m]	0	0	0	0
Case 1	M_{in} , [kN·m]	0	0	0	0
(0 psi)	V_{out} , [kN]	0	0	0	0
	V_{in} , [kN]	0	0	0	0
	M_{out} , [kN·m]	2,772	-	13,860	-
Case 2	M_{in} , [kN·m]	-	5,547	-	27,736
(3 psi)	V_{out} , [kN]	1,630.5	-	8,152.9	-
	V_{in} , [kN]	-	804	-	4,020
	M_{out} , [kN·m]	5,226	-	26,130	-
Case 3	M_{in} , [kN·m]	-	10,452	-	52,258
(5 psi)	V_{out} , [kN]	3,074.1	-	15,370.5	-
	V_{in} , [kN]	-	1,515	-	7,574
	M_{out} , [kN·m]	8,082	-	40,410	-
Case 4	M_{in} , [kN·m]	-	16,189	-	80,797
(7 psi)	V_{out} , [kN]	4,754.1	-	23,770.5	-
-	V_{in} , [kN]	-	2,342	-	11,710

Note. M_{out} is overturning out-of-plane moment, M_{in} is overturning in-plane moment, V_{out} is out-of-plane shear, V_{in} is in-plane shear.

면벽체에 많은 전단력이 발생하고[Fig. 3(a) 참조], 정면벽체에 보다 많은 모멘트가 발생하는 것으로 나타났다. 이와 반대로 폭발하중이 횡방향과 평행 하면 측면벽체에 큰 전단력과 모멘트가 발생하는 것으로 나타났다[Fig. 4(b) 참조].

2.2 지진하중산정

이 연구에서 수행한 내진설계의 변수를 나타내고 있다. 이 연구에서 설계가수행된 대상건물의 내진저항시스템은 내력벽시스템(Bearing wall systems)이며, 그중에서도 프리캐스트 중간전단벽(Intermediate precast structural wall)이다. 해당 횡력저항시스템의 반응수정계수(Response modification factor)는 4.0, 초과강도계수(Overstrength factor)는 2.5, 그리고 변위증폭계수(Displacement amplification factor)는 4.0이다. Table 2은 모든 방폭하중의 Case에 대하여 밑면전단력과 건물의 주기를 요약하여 나타낸 것이다. 앞서 언급된 바와 같이 폭발하중의 크기가 커지면서 초기설계의 결과인 벽체의 두께가 증가되었다. Table 2에 나타낸 바와 같이 벽체의 두께가 두꺼워짐에 따라 밑면전단력의 크기가 커지고 있으며, 주기는 짧아지고 있는 것으로 나타났다.

3. 전단벽 설계

Table 3은 대상건물의 전단벽에 작용하는 면내하증을 폭발하중과 지진 하중으로 나누어 나타낸 것이다. 모든 하중은 강도감소계수를 고려하여 나타낸 것이며, 폭발하중과 지진하중 중 보다 큰 값은 밑줄로 나타내었다. 상

Table 2. Summary of seismic design force and period of building

Blast Load	Anal	ytical	Direction	Base shear	Period
[psi]	me	thod	Direction	[kN]	[sec]
		RS	Longitudinal	43	-
Case 1	FEM	Ro	Transverse	1111.0	0.061
(0 psi)		ELF	Both	1407.6	0.205
	Manual	ELF	Both	[kN] 43 1111.0	0.207
		RS	Longitudinal 47.9		-
Case 2	FEM	Ro	Transverse	1290.8	- 0 0.061 6 0.205 3 0.207 - 8 0.056 5 0.205 5 0.207 - 8 0.052 6 0.205 6 0.207 - 2 0.051 8 0.205
(3 psi)		ELF	Both	1516.5	0.205
	Manual	ELF	Both	1514.5	0.207
		RS	Longitudinal	53.3	-
Case 3	FEM	Ro	Transverse	1421.8	0.052
(5 psi)		ELF	Both	1608.6	0.205
	Manual	ELF	Both	1606.6	0.207
		RS	Longitudinal	23	-
Case 4	FEM	Ro	Transverse	1525.2	0.051
(7 psi)		ELF	Both	1700.8	0.205
	Manual	ELF	Both	1698.6	0.207

Note. ELF: Equivalent lateral force method specified in ASCE 7-22. RS: Resposne spectrum method specified in ASCE 7-22.

Table 3. Comparison between seismic and blast design loads for in-plane direction

Blast Load	Design forces	_	tudinal ction	Transverse direction		
[psi]		Blast	Seismic	Blast	Seismic	
Case 1	$M_{\!in}$, [kN·m]	0	<u>5,459.4</u>	0	<u>5,459.4</u>	
(0 psi)	111.1	949.4	0	949.4		
Case 2	M_{in} , [kN·m]	5,547	<u>5,813.2</u>	27,736	5,813.2	
(3 psi)	V_{in} , [kN]	804	<u>1,011</u>	4,020	1,011	
Case 3	$M_{\!in}$, [kN·m]	10,452	6,166.3	52,258	6,166.3	
(5 psi)	V_{in} , [kN]	<u>1,515</u>	949.4 0 5,813.2 27,736 1,011 4,020	1,072.4		
Case 4	M_{in} , [kN·m]	16,189	6,166.3	80,797	6,166.3	
(7 psi)	V_{in} , [kN]	2,342	6,519.3	11,710	6,519.3	

Note. Design load is denoted underline.

대적으로 폭발하중의 크기가 작은 Case 1과 Case 2에 대해서는 주로 지진 하중이 지배하는 것으로 나타났으며, 나머지 Case(즉, Case 3, 4)에서는 폭발하중이 주로 설계하중을 지배하는 것으로 나타났다. Table 4는 강도설계결과를 나타내고 있다. 밑줄로 표현된 강도 값은 지진하중에 의해 산정된 설계강도를 의미한다. Table 4에 나타낸 바와 같이 폭발하중의 크기가 증가됨에 따라 지진하중이 설계결과에 미치는 영향이 감소되는 것으로 나타났다. 이 연구에서 사용되는 건물의 내진저항 시스템은 앞서 언급된 바와 같이 프리캐스트 중간 전단벽으로 구성된 내력벽 시스템이며, 따라서 모든 Case는 내진설계기준이 만족되어야 한다. Case 1 및 2 뿐만 아니라 폭발하중을통해 강도설계가 수행된 Case 3 및 4 또한 ACI 318-19에서 제시하고있는 것과 같이 항복하지 않는 접합부는 1.5 S_p 의 초과강도가 적용되었다. Table 4에 나타낸 것과 같이, 내진설계와 방폭설계가 수행된 벽체의 S_p 비율(S_p

^{*} Refer to Fig. 3(a), * Refer to Fig. 3(b)

Table 4. S	Strength	design	result for	in-plane	direction
------------	----------	--------	------------	----------	-----------

Blast		Design result			
	Diversion	Moment per PC unit	Shear per PC unit		
Load [psi]	Direction	Flexural strength, $M_{\!\scriptscriptstyle n}$, [kN·m]	Shear strength, V_n , [kN], ($\mathcal{S}_{\mathcal{Y}}$ ratio)		
Case 1 (0 psi)	Longitudinal	25,957	10,395 (2.25)		
	Transverse	<u>6,400</u>	2,835 (2.55)		
Case 2	Longitudinal	32,586.3	12,128.6 (2.4)		
(3 psi)	Transverse	27,736	5,233.2 (2.55)		
Case 3	Longitudinal	46,013.3	14,088.8 (2.25)		
(5 psi)	Transverse	52,258.4	10,609.2 (2.4)		
Case 4	Longitudinal	50,729.6	21,830.6 (2.55)		
(7 psi)	Transverse	80,797	18,871.8 (4.05)		

Note. Denoted underlined is seismic design result, and the others are blast design results.

ratio)로 표현하였으며, 모든 Case에 대하여 프리캐스트 중간 전단벽의 요구조건(1.5S_y 이상)을 만족하는 것으로 나타났으며, 휨설계에서 최소철근비 및 최대간격이 지배하는 경우가 많아서 전단강도를 만족시키기 위한 상대적으로 높은 초과강도가 도입되었다.

4. 폭발하중에 대한 등가정적해석(ESA)

이 연구에서 모든 위험도수준(Case 2~4)에 대하여 등가정적해석 및 동적해석을 수행하였지만, 가장 고위험도수준인 Case 4(7 psi)만을 그림으로 나타내었다. Fig. 7은 대상건물의 부재별 등가폭발하증을 나타내고 있다. Fig. 7(a)는 정면벽체에 작용하는 폭발하증을 보여주고 있으며, 하증의 시간 이력형상은 삼각형 형태의 등가하증으로 산정된다. Fig. 7(b)는 정면벽체에 작용하는 폭발하증이 지점역활을 하는 다이아프램(Diaphragm)에 전달된 하중-시간 그래프이며, 최대크기는 정면벽체에 작용되는 전단력의 절반에 해당한다(Fig. 4 참조). Fig. 7(c) 및 7(d)는 측면벽체에 가해지는 하증을 나타낸 것이며, 각각 면외방향하중(Out-of-plane)과 면내방향하중(In-plane)을 의미한다.

Fig. 8은 ASCE Manual 42에서 제시하고 있는 단자유도 이상화를 통하여 산정된 비선형동적해석결과이며, 이는 일종의 그래픽 차트로써 건물의

Fig. 7. Equivalent blast load

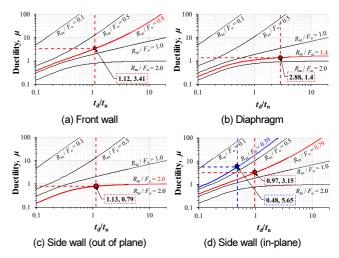


Fig. 8. Solution chart of ESA (Case 4)



Fig. 9. IDTHA Flowchart

주기와 폭발하중 지연시간의 비율 (t_d/t_n) , 건물의 저항성능과 폭발하중의 크기의 비율 (R_m/F_o) 에 따른 건물의 연성도(Ductility, μ) 사이의 관계를 나타낸다. 참고로 앞서 식(10)은 이 차트의 일부라 할 수 있으며, 이 연구에서는 Fig. 9에 제시된 비탄성동적시간이력해석(Incremental dynamic time-history analysis, IDTHA)을 통해 작성되었다. Fig. 8(a)는 면외 하중을 받는 정면벽체, Fig. 8(b)는 면내 하중을 받는 다이아프램, Fig. 8(c)는 면외 하중을 받는 측면벽체, Fig. 8(d)는 면내 하중을 받는 측면벽체의 비선형 동적 해석결과를 보여주고 있으며, Fig. 8(d)에서 빨간색선과 파란색선은 각각 군집합성벽체와 비합성벽체의 결과를 나타내고 있다. Fig. 8의 차트에서 수평축은 t_d/t_n 이므로 결정된 값이다. 또한 벽체의 휨강도와 전단강도 중에서 작은 값을 사용하여 동적시스템의 강도를 등가의 정적시스템 강도(R_m)로 치환하면(ASCE Manual 6장 참고), R_m/F_o 를 정할 수 있다. 따라서 최종적으로 수직축에 해당하는 요구연성도(μ)를 결정할 수 있으며, 등가의 정적시스템 강도(R_m)를 계산하고 여기에 요구연성도를 곱하여 비탄성 횡변위를 산정할 수 있다.

Table 5. Summary of drift check under blast loads

Case	Analytical	Direction	δ_{xe}	δ_x	Value		Allowable value*		
	method		[mm]	[mm]	μ	θ	value μ _{allow} - 1.3 - 3.0 3.0 - 1.3 - 3.0 3.0 - 1.3 - 3.0 3.0 - 1.3 - 3.0 3.0	θ_{allow}	
		Front wall	16	43.5	2.71	0.93	-	1	
		Diaphragm (in-plane)	0.312	0.318	1.02	-	1.3	-	
Case 2		Side wall (out of plane)	16	12.8	0.80	0.21	-	1	
	analysis	Side wall (in-plane) - non coupling	2.8	18.4	6.37	0.15	3.0	1	
		Side wall (in-plane) - group coupling	1.4	5.58	3.86	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		
			Front wall	18.4	59.7	3.23	0.99	-	1
		Diaphragm (in-plane)	0.627	0.551	0.88	-	1.3	-	
Case 3	analysis Fourivalent static	Side wall (out of plane)	18.4	14.7	0.80	0.245	-	1	
		Side wall (in-plane) - non coupling	4.7	28.1	5.89	0.23	3.0	1	
		Side wall (in-plane) - group coupling	2.3	8.0	3.38	0.067	$\begin{array}{c c} & \text{valu} \\ \hline \mu_{allow} \\ \hline \\ - \\ \hline \\ 1.3 \\ - \\ \hline \\ 3.0 \\ \hline \\ 3.0 \\ - \\ \hline \\ 1.3 \\ - \\ \hline \\ 3.0 \\ \hline \\ 3.0 \\ \hline \\ - \\ \hline \\ 1.3 \\ - \\ \hline \\ \end{array}$	1	
		Front wall	19	64.9	3.4	1.07	μ_{allow} 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0	1	
	Case 2 Equivalent static analysis Case 3 Equivalent static analysis Equivalent static analysis Side was si		Diaphragm (in-plane)	0.627	0.872	1.39	-	1.3	-
Case 4		Side wall (out of plane)	19	15.0	0.79	0.25	-	1	
	ailaiyəiə	Side wall (in-plane) - non coupling	6.5	37.1	5.65	0.30	3.0	1	
	Case 2 analysis Equivalent static analysis Equivalent static	Side wall (in-plane) - group coupling	3.2	10.2	3.14	0.085	3.0	1	

^{*} Note. Allowable value is presented in ASCE Manual 42, in which rotational angle is originally presented, thus it converted into radian values.

$$\delta_x = \mu \delta_{ex} \tag{11}$$

여기서, δ_x 는 설계변위, μ 는 차트를 통해 결정된 요구연성도, δ_{ex} 는 탄성변 위를 의미한다. 이 같은 ESA 계산법을 통해 모든 폭발하중 Case에 대해 ASCE Manual 42에서 제시하고있는 허용변형량(연성도 또는 회전각)대 하여 평가 후, Table 5에 요약하였다. ESA를 통해 산정된 정면벽체의 변위 각은 모든 Case 4를 제외한 모든 Case(Case 2,3)에서 허용변위각인 1.0° 이 하로 산정되어 설계기준을 충분히 만족하고 있는 것으로 나타났지만, Case 4에서 정면벽체의 변위각은 1.07° 로 허용변위각을 초과하는 것으로 나타나설계기준을 만족하지 못하였다. 측면벽체는 폭발하중을 받는 모든 Case에서 비합성벽체와 군집합성벽체로 설계된 2가지 경우에 대하여 각각 검토하였다. 모든 Case에서 비합성벽체와 군집합성벽체의 요구연성도를 비교하였을 때, 약 0.6배 정도로 군집합성벽체의 연성도가 적은 것으로 나타났다. 군집합성벽체로 설계되었음에도 측면벽체의 연성도가 허용 값인 3.0을 초과하여 설계기준을 만족하지 못하는 결과가 나타났다.

5. 동적해석(IDTHA)

동적하증을 위한 설계하증은 앞서 면내하증의 경우에는 Fig. 6(a)에 나타낸 이선형곡선으로 이상화하며, 이를 바탕으로 산정된 하중의 시간이력을 Fig. 10에 나타냈다. 상세한 과정은 ASCE Manual[3]을 참고할 수 있다. 대상건물의 등가정적해석에서 면내방향의 변형 측면에서는 다소 과대평가되는 경향이 나타났다. 이를 보완하기 위하여 추가적인 동적해석이 수행되었다. 이 연구에서는 비탄성동적시간이력해석(Incremental dynamic timehistory analysis, IDTHA)을 수행하였으며, 동적해석은 ASCE manual 42 및 Paz[5]에서 제시하는 수치적분방법(Numerical integration method)으로 수행되었다(Fig. 9 참고). 이 논문에서 대상으로하는 건물은 ASCE

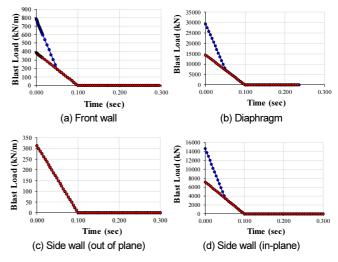


Fig. 10. Equivalent blast load

Manual[3]에서 제시하고 있는 것과 같이 등가의 단자유도시스템으로 변환하여 동적해석이 수행되었다. Fig. 11와 Table 6는 대상건물의 동적해설결과를 요약하여 나타내고 있다. Fig. 11은 최대 폭발압력을 받는 Case 4에 대한 대상건물의 부재별 동적해석결과를 나타내고있으며, Fig. 11(a)는 면외하중을 받는 정면벽체, Fig. 11(b) 면내하중을 받는 다이아프램, Fig. 11(c)와 Fig. 11(d)는 각각 면외하중과 면내하중을 받는 측면벽체의 거동을 나타내고 있다. Fig. 10(d)에서 빨간색 점과 하얀색 점은 각각 군집합성된 측면벽체의 거동과 비합성된 측면벽체의 거동을 나타내고 있으며, 군집합성된 측면벽체는 비합성된 측면벽체에 비해 강한 강성(단면2차모멘트)과 큰 저항성능(합성단면의 강도)을 보유하고 있음을 보여주고 있다. Table 6은 모든 Case에 대하여 비탄성동적시간이력해석의 결과를 변위, 연성도, 변위각에 대하여 나타내고 있다. 정면벽체, 다이아프램, 면외하중을 받는 측면벽에 대하여 나타내고 있다. 정면벽체, 다이아프램, 면외하중을 받는 측면벽

Table 6. Summary of drift check under blast loads

Case	Analytical	Direction	δ_{xe}	δ_x	Value		Allowable value*	
	method		[mm]	[mm]	μ	θ	val μ _{allow} - 1.3 - 3.0 3.0 - 1.3 - 3.0 3.0 - 1.3 - 3.0 3.0 - 3.0 3.0	θ_{allow}
		Front wall	16	32.5	2.03	0.54	-	1
		Diaphragm (in-plane)	0.312	0.305	0.98	-	1.3	-
Case 2	Dynamic static analysis	Side wall (out of plane)	16	12.6	0.78	0.20	-	1
	allalysis	Side wall (in-plane) - non coupling	2.8	11.8	4.07	0.09	3.0	1
		Side wall (in-plane) - group coupling	1.4	3.8	2.71	0.03	$\begin{array}{c} \text{valu} \\ \mu_{allow} \\ - \\ 1.3 \\ - \\ 3.0 \\ 3.0 \\ - \\ 1.3 \\ - \\ 3.0 \\ 3.0 \\ - \\ 1.3 \\ - \\ 3.0 \\ 3.0 \\ - \\ 3.0 \\ 3.0 \\ - \\$	1
		Front wall	18.4	41	2.22	0.68	-	1
		Diaphragm (in-plane)	0.627	0.53	0.84	-	1.3	-
Case 3	Dynamic static analysis	Side wall (out of plane)	18.4	14.8	0.80	0.245	-	1
	anarysis	Side wall (in-plane) - non coupling	4.7	17.6	3.70	0.14	3.0	1
		Side wall (in-plane) - group coupling	2.3	5.5	2.39	0.045	$\begin{array}{c} \text{valt} \\ \mu_{allow} \\ - \\ 1.3 \\ - \\ 3.0 \\ 3.0 \\ - \\ 1.3 \\ - \\ 3.0 \\ 3.0 \\ - \\ 1.3 \\ - \\ \end{array}$	1
		Front wall	19	47.9	2.50	0.79	-	1
		Diaphragm (in-plane)	0.62	0.77	1.22	-	1.3	-
Case 4	Dynamic static analysis	Side wall (out of plane)	19	15	0.78	0.249	-	1
	analysis	Side wall (in-plane) - non coupling	6.5	24.4	3.41	0.18	3.0	1
		Side wall (in-plane) - group coupling	3.2	6.8	2.08	0.056	3.0	1

^{*} Note. Allowable value is presented in ASCE Manual 42, in which rotational angle is originally presented, thus it converted into radian values.

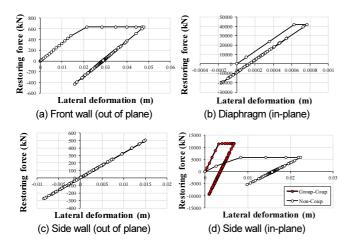


Fig. 11. Dynamic analysis result

체는 모든 Case에 대하여 ASCE Manual 42에서 제시하는 허용변위각 및 연성도를 만족하는 것으로 나타났다. ESA를 통해 산정된 것과는 다르게 동적해석을 수행한 경우에는 면내하중을 받는 측면벽체는 폭발하중을 받는 모든 Case에서 비합성벽체와 군집합성벽체로 설계된 2가지 경우에 대하여약 0.6배정도로 군집합성벽체의 연성도가 적은 것으로 나타났으며, 측면 벽체의 연성도가 허용 값인 3.0을 만족하는 결과가 나타났다. 하지만, 동적해석과정에서 사용된 단자유도 시스템으로는 축력에 대한 영향 그리고 파괴유형과 같은 효과를 반영할 수 없다는 한계가 있는 것으로 나타났다.

6. 결론

이 연구에서는 지진 하중과 폭발 하중에 대하여 실용적인 방식으로 내력 비시스템의 설계과정을 간단하게 하는 것을 목표로 하였다. 폭발압력의 크

기(0 psi, 3 psi, 5 psi, 7 psi)를 변수로 폭발하중산정, 기본설계, 지진하중산정, 설계하중채택, 강도설계, 허용연성도 및 변위각 검토 순서로 설계를 수행하였다. 방폭설계의 허용연성도 및 변위각를 확인하기 위해 등가정적해석(ESA)과 동적해석방법인 비탄성시간이력해석(Incremental dynamic time-history analysis, IDTHA)방법을 채택하였다. 이를 바탕으로 다음과같은 결론을 내렸다.

- 1) 설계과정에서 중요한 요인은 설계하중을 결정하는 것이며, 이 연구에서는 폭발하중과 지진하중의 2가지 요인을 고려하여 설계하였다. 설계하중이 결정될 때에는 각 하중의 특성(강도감소계수, 설계요구조건-1.5S,)에 따른 설계가 고려되어야한다. 상대적으로 폭발하중의 크기가 작은 Case 1, Case 2의 길이방향 벽체에 대해서는 지진하중이, 이를 제외한 Case(Case 2의 횡방향 벽체, Case 3, 4)에서는 폭발하중이 지배적인 것으로 나타났다. Case 2에서 길이방향 벽체는 지진하중이, 횡방향 벽체는 폭발하중이 지배적인 것으로 보아, 폭발하중은 단변방향(횡방향 벽체)의 벽체에 미치는 영향이 큰 것으로 판단되며, 이를 고려하여 강도설계를 수행하여야 한다.
- 2) ESA의 결과에서 나타난 일부 부재(즉, 측면 전단벽, Shear wall)는 IDTHA의 결과와 비교하였을 때 면내방향의 변형 측면에서 다소 과대 평가되는 경향을 나타냈으며, 등가의 폭발하중에 대하여 충분한 강도 설계를 적용하더라도 변형측면에서는 설계 기준을 만족하지 못하는 것으로 나타났다.
- 3) ESA의 과대평가를 보완하기 위해수행된IDTHA에서 모든 Case 및 측면벽체를 제외한 모든 부재에서 설계기준을 충분히 만족하는 것으로 나타났다. 이를 보아, 지진하중과 폭발하중이 고려된 설계하중 대하여 수행된 강도설계는 ESA와IDTHA의 과정을 수행한 후 적용될 수 있을 것으로 판단된다.

- 4) 비합성벽체의 면내강도가 부족할 경우를 대비한 군집합성벽체는 같은 량의 휨 철근을 사용하였음에도 불구하고 비합성벽체보다 큰 강성과 강 도를 보유하고 있다. 이는 ESA와 IDTHA의 비합성벽체와 군집합성벽 체의 요구연성도에서도 나타나고 있다. 따라서, 군집합성벽체는 합리적 으로 채택가능한 설계방법의 것으로 예상된다.
- 5) ESA와 IDTHA와 같은 단자유도 시스템으로 건물을 단순화하여 구조 설계를 수행하는 것을 목표로 하며, 국부적인 파괴 등과 같은 상세한 구 조물의 거동을 반영할 수 없다는 한계가 있지만, 폭발하중에 대하여 실 무적인 설계를 위하여 실용적으로 활용될 수 있을 것으로 판단된다.

/ 감사의 글 /

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. RS-2023-00209647).

/ REFERENCES /

- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). Farmington Hills, MI: American Concrete Institute; c2019, 624 p.
- American Society of Civil Engineers. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-22). Reston, VA: American Society of Civil Engineers; c2022, 479 p.
- ASCE Task Committee on Updating Manual 42 of the Committee on Dynamic Effects of the Structural Division. Design of Structures to Resist Nuclear Weapons Effects. Reston, VA: American Society of Civil Engineers; c1985, 42 p.
- Paz M. Structural Dynamics: Theory and Computation, third edition. New York, NY: M. Paz, Van Nostrand Reinhold Inc.; c1991. 626 p.
- Paz M, Microcomputer-Aided Engineering: Structural Dynamics. New York, NY: M, Paz, Van Nostrand Reinhold Company; c1986. 321 p.