• Title/Summary/Keyword: wall structures

Search Result 1,882, Processing Time 0.027 seconds

Design Optimization of Earth Retaining Walls Using the Taguchi Method (다구찌 기법을 활용한 흙막이 가설공법 최적설계 방안)

  • Moon, Sungwoo;Kim, Sungbu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Temporary structures provide the accessible working area when building a permanent building structure in the construction operation. Executed in a natural environment, the temporary structure is prone to the external influence factors of underground water, soil conditions, etc. These factors should be carefully considered in designing the temporary structure. The objective of this study is to apply the external influence factors in designing a more reliable earth retaining wall. The research methodology is based on the Taguchi method that has been studied to improve product quality in the industry. An orthogonal array was developed to analyze the interaction between the external influence factors and the internal influence factors. A sample case study demonstrated that the Taguchi method can be used in planning a more reliable temporary structure for earth retaining walls.

Efficient Analysis of Shear Wall with Piloti (필로티가 있는 전단벽의 효율적인 해석)

  • 김현수;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.387-399
    • /
    • 2003
  • The box system that consists only of reinforced concrete walls and slabs we adopted in many high-rise apartment buildings recently constructed in Korea. Recently, many of the box system buildings with pilotis has been constructed to meet the architectural design requirements. This structure has abrupt change in the structural properties between the upper and lower parts divided by transfer girders. For an accurate analysis of a structure with pilotis, it is necessary to have the buildings modeled into a finer mesh. But it would cost tremendous amount of computational time and memory. In this study, an efficient method is proposed for an efficient analysis of buildings those have pilotis with drastically reduced time and memory. In the proposed analysis method, transfer gilders are modeled using super elements developed by the matrix condensation technique and fictitious beams are introduced to enforce the compatibility conditions at the boundary of each element. The analyses of example structures demonstrated that the proposed method used for the analysis of a structure with pilotis will provide analysis results with accuracy for the design of box system buildings.

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

Study on Flow Structure of Turbulent Boundary Layer Over Semi-Circular Riblets (반원형 리블렛 상부 난류경계층의 유동 구조 연구)

  • Lee, Sang Hyun;Lee, Sang Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.937-944
    • /
    • 1999
  • The near-wall flow structures of turbulent boundary layer over riblets having semi-circular grooves were investigated experimentally for the drag decreasing ($s^+=25.2$) and drag increasing ($s^+=40.6$) cases. The field of view used for tho velocity field measurement was $6.75{\times}6.75mm^2$ in physical dimension, containing two grooves. One thousand instantaneous velocity fields over the riblets were extracted for each case of drag increase and decrease. For comparison, five hundreds instantaneous velocity fields over a smooth flat plate were also obtained under the same flow conditions. To see the global flow structure qualitatively, the flow visualization was also performed using the synchronized smoke-wire technique. For the drag decreasing case ($s^+=25.2$), most of the streamwise vortices stay above the riblets, interacting with the riblet tips. The high-speed in-rush flow toward the riblet surface rarely influences the flow inside tho riblet valleys submerged in the viscous sublayer. The riblet tips seem to impede the spanwise movement of the longitudinal vortices and induce secondary vortices. The turbulent kinetic energy in the riblet valley is sufficiently small to compensate the increased wetted area of the riblets. In addition, in the logarithmic region, the turbulent kinetic energy are small or almost equal to that of a smooth flat plato. For the drag increasing case ($s^+=40.6$), however, the streamwise vortices move into the riblet valley freely, interacting directly with the riblet inner surface. The penetration of the high-speed in-rush flow on the riblets increases tho skin-friction. The turbulent kinetic energy is increased in the riblet valleys and even in the outer region compared to that over a flat plate.

A STUDY ON THE PRE-AND POST-IRRADIATION EFFECT OF BLOOD VESSELS IN THE EXPERIMENTALLY INDUCED TONGUE CANCER (실험적 설암에서 방사선 조사전후의 혈관분포에 관한 연구)

  • Kim Young-Tae;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.1
    • /
    • pp.41-49
    • /
    • 1990
  • The author observed the changes of vasculature of pre-and post-irradiation on DMBA induced rat tongue cancer. The study was performed by using vascular corrosion resin casting, and scanning electron microscopy. The results were as follows. 1. The capillaries runned parallely and formed bundles and, sometimes, plexus. The endothelial cells were arranged regularly and small pores were observed. 2. In irradiated normal tongue the capillaries were curved slightly and formed plexus on initial day of post-irradiation. On third day the capillaries and capillary pores were dilated and the endothelial cell arrangement was irregular. The effects of irradiation were gradually increased from initial to the 3rd day, though it was decreased after 7th day. 3. The vasculature of DMBA induced tongue cancer group were very irregular, and large avascular lesions were formed according to the cancer necrosis or tumor cell nest and the vasculature was narrowed and paralleled around the avascular lesion by compression of cancer cell nest. The vascular wall was roughened and dilated, forming club shaped or varix. 4. The vessels were curved and formed reticular network in irradiated DMBA induced tongue carinoma group. The free end of newly formed capillaries had regular width, and also irregular club shaped or aneurysmal dilatation were observed. The vascular structures were destroyed and vessels were fused in tumor necrosis lesion. The radiation effects were marked on the first and third day of irradiation and the effects were decreased after seventh day and showed capillary regeneration.

  • PDF

Design and Evaluations of Underwater Hydrophone with Self Noise Suppressing Structures -Part Ⅰ. Noise Transfer Characteristics & Effects of Structure Modifications - (저 잡음 수중 청음기의 설계 방안 연구 -Ⅰ. 잡음 전달 특성 및 구조 변경 영향 -)

  • Im, Jong-In;Roh, Young-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.10-15
    • /
    • 1997
  • The hydrophones is mounted in many applications on a vibrating surface and functions as an underwater acoustic signal receiver without sensing the vibrations from the mounting surface. However, their performance is usually degraded by the interference of exterior noises such as acoustic cavitation in water stream, host structural vibration in the hull, and propeller motions. This paper describes the design and evaluation of a self noise suppressing hydrophones which shows very poor sensitivity to the external noises, first, effects of the external noise on the its receiver performance is simulated with finite element method(FEM). Second, the geometrical variations are implemented on the original structure that include additional air pockets and acoustic walls which work as acoustic shied or scatter of the noises. The results show that the effect of the external noise is the most significant when it is applied near to the bottom of the side wall of the hydrophones. The transverse noise induced by the outside water flow is isolated most effectively when a thin compliant (damping) layer combined with two air pockets is inserted to the circumference of the nose. Noise level is reduced about fifty nine percent of that of the original structure.

  • PDF

Influence of the cylinder height on the elasto-plastic failure of locally supported cylinders

  • Jansseune, Arne;De Corte, Wouter;Vanlaere, Wesley;Van Impe, Rudy
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.291-302
    • /
    • 2012
  • Frequently, steel silos are supported by discrete supports or columns to permit easy access beneath the barrel. In such cases, large loads are transferred to the limited number of supports, causing locally high axial compressive stress concentrations in the shell wall above the supports. If not dealt with properly, these increased stresses will lead to premature failure of the silo due to local instability in the regions above the supports. Local stiffening near the supports is a way to improve the buckling resistance, as material is added in the region of elevated stresses, levelling these out to values found in uniformly supported silos. The aim of a study on the properties of local stiffening will then be to increase the failure load, governed by an interaction of plastic collapse and elastic instability, to that of a discrete supported silo. However, during the course of such a study it was found that, although the failure remains local, the cylinder height is also a parameter that influences the failure mechanism, a fact that is not properly taken into account in current design practice and codes. This paper describes the mechanism behind the effect of the cylinder height on the failure load, which is related to pre-buckling deformations of the shell structure. All results and conclusions are based on geometrically and materially non-linear finite element analyses.

Assessments of Creep Properties of Strip Type fiber Reinforcement (띠형 섬유보강재의 크리프 특성 평가)

  • 전한용;유중조;김홍택;김경모;김영윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.279-289
    • /
    • 2003
  • Geosynthetic reinforced earth wall was introduced about 20 years ago and many structures have been constructed. Especially, segmental concrete panel facing and friction tie system are the most popular system in Korea, and this friction tie was composed of high tenacity PET filament and LDPE(Low Density Polyethylene) sheath. Due to the lack of direct-test results, design coefficients of friction tie (creep reduction factor) had been determined by quoting the previous and the foreign reference data. This is an unreasonable fact for the use of friction ties. In this study, the creep tests were performed to evaluate the creep behavior of friction tie, and the reduction factor of creep was calculated for the correct design of geosynthetic reinforced earth retaining walls. From the test results, finally it was found that the allowable creep strength of friction tie is 60% of Tult during service life, and creep reduction factor is 1.67 for each grade of friction ties.

The Influence of Initial Stress Ratio on the Stress~Strain Characteristics of Geosynthetics Reinforced Clayey Soil (토목섬유 보강점성토의 응력~변형특성에 미치는 초기응력비의 영향)

  • 이재열;이광준;김유성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.169-178
    • /
    • 2002
  • The stress~strain characteristics of geosynthetics reinforced clayey soil were investigated by triaxial compression tests. All the tests were peformed either on unreinforced or reinforced soils under fully drained condition after having been consolidated isotropically or anisotropically to the required level of effective stresses by the small increment of 0.05kgf/$cm^2$. The anisotropically consolidated drained tests were performed to simulate the in-situ condition of reinforced soil structures such as reinforced soil wall, abutment and embankment which are generally in the anisotrpic state. From a series of tests it was ffund that the behavior of the anisotropically consolidated reinforced clayey soils was very different from stress~strain characteristics of consolidated reinferced clayey soils. It was found especially that the initial Young's moduli of anisotropically consolidated reinforced clayey soils were higher than those of isotropically consolidated reinforced clayey soils. It was found also that the reinforcement effect in anisotropically consolidated reinforced soils developed at a much lower level of axial strain(0.01%) compared with isotropically consolidated ones(about 1.0~5.0%).

Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production (구멍갈파래의 고압 균질 전처리 공정을 통한 바이오에탄올 생산용 당화수율 증진)

  • Choi, Woon-Yong;Lee, Choon-Geun;Ahn, Ju-Hee;Seo, Yong-Chang;Lee, Sang-Eun;Jung, Kyung-Hwan;Kang, Do-Hyung;Cho, Jeong-Sub;Choi, Geun-Pyo;Lee, Hyeon-Yong
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.400-406
    • /
    • 2011
  • This study was investigated to improve the saccharification yield of Ulva pertusa Kjellman by the high pressure homogenization process. It was found that the high pressure homogenization pretreatment effectively destructed the cell wall structures only by using water. The high pressure homogenization process was operated under various conditions such as 10000, 20000 or 30000 psi with different recycling numbers. The optimal condition was determined as 30000 psi and 2 pass of recycling numbers and the sugar conversion yields were 16.02 (%, w/w) of glucose and 14.70 (%,w/w) of xylose, respectively. In the case of enzymatic treating the hydrolyzates with 5 FPU/glucan of celullase and 100 units/mL of amyloglucosidase, 65.8% of carbohydrates was converted into glucose. Using the hydrolysates of Ulva pertusa Kjellman, 48.7% of ethanol was obtained in the culture S.cerevisiae. These results showed that the high pressure homogenization process could efficiently hydrolyze the marine resource by using only water for bioethanol production.