• Title/Summary/Keyword: wall shear stress distributions

Search Result 55, Processing Time 0.024 seconds

STOKES FLOW THROUGH A MICROCHANNEL WITH PROTUBERANCES OF STAGGERED ARRANGEMENT (엇갈린 배열의 돌출물들이 존재하는 마이크로채널 내의 스톡스 유동)

  • Son, Jeong Su;Jeong, Jae-Tack
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.109-115
    • /
    • 2015
  • In this study, the Stokes flow in the microchannel is analysed where the semicircular protuberances with constant spacing are attached on the upper and lower walls with staggered arrangement. For the low Reynolds number flow in microchannel, Stokes approximation is used and the periodicity and symmetry of the flow are considered to determine the stream function and pressure distribution in the flow field by using the method of least squared error. As results, the streamline patterns and pressure distributions in the flow field are shown for some specific values of the size and spacing of the protuberances, and shear stress distributions on the surface of semicircular protuberances are plotted. Especially, for an important physical property, the average pressure gradient along the microchannel is obtained and compared with that for the case of in-phase arrangement of the upper and lower protuberances. And, for the small clearance between the protuberances of upper and lower walls or between the protuberances and the opposite wall, the average pressure gradient is derived from the lubrication theory and compared with that of the present study.

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.

A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion (마그마관입에 의한 상부퇴적층의 변형에 관한연구)

  • Min, Kyung Duck;Kim, Won Young
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

Stent Design Using Computational Fluid Dynamics (전산유체역학을 이용한 스텐트 설계)

  • Kim, Tae-Dong;Barakat, Abdul;Seo, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1042-1048
    • /
    • 2005
  • Numerical investigation has been made on the stent design to minimize the neointimal hyperplasia. Computational fluid dynamics is applied to investigate the flow distributions in the immediate vicinity of the given idealized stent implanted in the blood vessel. Parametric study on the variations of the number of stouts, stent diameters, stent spacings and Reynolds numbers has been conducted using axi-symmetric Navier-Stokes equations. An initial difficulty in the study is to determine the optimal stent design to understand the flow physics of the flow disturbance induced by stent. The size of recirculation zone around stent is depend on the stent diameter, number of stent wire and Reynolds number but is insensitive to the stent wire spacing. It is also found that when the flow is in acceleration, the flow sees a more favorable pressure gradient, and the separation zones are smaller than the steady flow case. When the flow is in deceleration and the flow sees a more adverse pressure gradient so that the separation zones are larger.

Numerical Simulation of a Conical Diffuser Using the Nonlinear $k-{\epsilon}$ Turbulence Model (비선형 $k-{\epsilon}$ 난류모델에 의한 원추형 디퓨저 유동해석)

  • Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1998
  • A diffuser, an important equipment to change kinetic energy into pressure energy, has been studied for a long time. Though experimental and theoretical researches have been done, the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. As far as numerical prediction of diffuser flows are concerned, various numerical studies have also been done. On the contrary, many turbulence models have constraint to the applicability of diffuser-like complex flows, because of anisotropy of turbulence near the wall and of local nonequilibrium induced by an adverse pressure gradient. The existing $k-{\epsilon}$ turbulence models have some problems in the case of being applied to complex turbulent flows. The purpose of this paper is to test the applicability of the nonlinear $k-{\epsilon}$ model concerning diffuser-like flows with expansion and streamline curvature. The results show that the nonlinear $k-{\epsilon}$ turbulence model predicted well the coefficient of pressure, velocity profiles and turbulent kinetic energy distributions, however the shear stress prediction was failed.

  • PDF

Lateral load effects on tall shear wall structures of different height

  • Carpinteri, Alberto;Corrado, Mauro;Lacidogna, Giuseppe;Cammarano, Sandro
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.313-337
    • /
    • 2012
  • A three-dimensional formulation is proposed to analyze the lateral loading distribution of external actions in high-rise buildings. The method is extended to encompass any combination of bracings, including bracings with open thin-walled cross-sections, which are analyzed in the framework of Timoshenko-Vlasov's theory of sectorial areas. More in detail, the proposed unified approach is a tool for the preliminary stages of structural design. It considers infinitely rigid floors in their own planes, and allows to better understand stress and strain distributions in the different bearing elements if compared to a finite element analysis. Numerical examples, describing the structural response of tall buildings characterized by bracings with different cross-section and height, show the effectiveness and flexibility of the proposed method. The accuracy of the results is investigated by a comparison with finite element solutions, in which the bracings are modelled as three-dimensional structures by means of shell elements.

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Numerical Investigation on Structural Behavior of a Lid with Stiffeners for Suction-installed Cofferdams (석션 가물막이 보강 상판의 구조 거동에 대한 수치해석 연구)

  • Kim, Jeongsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.7-17
    • /
    • 2019
  • With increasing demand for large offshore infrastructures, suction cofferdams have been large, and the lid stiffener arrangement for a suction cofferdam has become a key element in cofferdam design to constrain the flexural deformation effectively. This study analyzed the changes in the structural behavior of a lid for a suction cofferdam due to lid stiffeners to provide insights into effective stiffener arrangements. By investigating conventional suction anchors, several stiffener patterns of a lid for a polygonal suction cofferdam were determined and analyzed. The structural performance of the stiffened lids was estimated by comparing the stress and deformation, and the reaction distributions on the edge of lid were investigated to analyze the effects of the stiffener arrangement on the lid-wall interface. Finite element analysis showed that radial stiffeners contribute dominantly to decreasing the stress and vertical deflection of the lids, but the stiffeners cause an increase in shear forces between the lid and wall; the forces are concentrated on the lid near the areas reinforced with radial stiffeners, which is negative to lid-wall connection design. On the other hand, inner and outer circumferential stiffeners show little reinforcement effects in themselves, while they can help reduce the stress and deformation when arranged with partial radial stiffeners simultaneously.

Stokes Flow Through a Microchannel with Projections of Constant Spacing (일정 간격의 돌출부를 갖는 마이크로채널 내의 스톡스 유동 해석)

  • Son, JeongSu;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.335-341
    • /
    • 2015
  • In this study, we analyzed a two-dimensional Stokes flow through a microchannel containing projections with constant spacing attached to each wall. The projections on the top and bottom walls were semi-circular in shape, with in-phase locations. By considering the periodicity and symmetry of the flow, the eigenfunction expansion and least squared error method were applied to determine the stream function and pressure distribution. For some typical radius and spacing values, the streamline patterns and pressure distributions in the flow field are shown, and the shear stress distributions on the boundary walls are plotted. In addition, the average pressure gradients in the microchannel are also calculated and shown with the radius and spacing of the projections. In particular, the results for the case of extremely small gaps between the projections on the top and bottom walls are in good agreement with the lubrication results.