• Title/Summary/Keyword: walking machine

Search Result 65, Processing Time 0.031 seconds

Eight Legs walker by using janssen mechanism (얀센 메커니즘을 활용한 보행체)

  • Seok, Jun young;Hong, Jun gi
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.485-488
    • /
    • 2016
  • In this paper, the mechanism that works by using eight legs is proposed. The walker has eleven bars instead of wheel, it shows a Biologically-inspired movement method. their driving appearance is very similar with creature which walks by its legs. For example, a crab and spider so on. This mechanism has simple style that can expand its size and attach more legs beside. For the competition regulation, we had to find working parts in the science box and some other things that can be found easily in the surroundings only usual material. The mission is making a machine that is enable to pass obstacle and to walk well. This paper followed the rules by regulation.

  • PDF

Real-Time Cattle Action Recognition for Estrus Detection

  • Heo, Eui-Ju;Ahn, Sung-Jin;Choi, Kang-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2148-2161
    • /
    • 2019
  • In this paper, we present a real-time cattle action recognition algorithm to detect the estrus phase of cattle from a live video stream. In order to classify cattle movement, specifically, to detect the mounting action, the most observable sign of the estrus phase, a simple yet effective feature description exploiting motion history images (MHI) is designed. By learning the proposed features using the support vector machine framework, various representative cattle actions, such as mounting, walking, tail wagging, and foot stamping, can be recognized robustly in complex scenes. Thanks to low complexity of the proposed action recognition algorithm, multiple cattle in three enclosures can be monitored simultaneously using a single fisheye camera. Through extensive experiments with real video streams, we confirmed that the proposed algorithm outperforms a conventional human action recognition algorithm by 18% in terms of recognition accuracy even with much smaller dimensional feature description.

Usability Test of 'Paldokangsan3' a Walking Game for the Elderly (노인용 걷기게임 '팔도강산3'의 사용성 연구)

  • Kim, KyungSik;Lee, YoonJung;Oh, DooNam
    • Journal of Korea Game Society
    • /
    • v.15 no.1
    • /
    • pp.145-154
    • /
    • 2015
  • The objective of this research is to evaluate the usability test of 'Paldokangsan3' which has been developed as a serious game for the elderly to improve their physical and mental health. This game machine has been installed in a silver house for one month that the elderly could play the game as they like in their convenient times. To promote their participations to practice the game, we set 3 contests with gifts for the high scores and collect their data through inspection, questionnaire and interviews by the researchers as well as in-game measurement for the play. Eight people volunteered to join the project. While the result analysis for the usability area of easiness of control, learnability of the game play, memorability and challenge didn't show the statistical confident t-value, most elderly players participated 2~3 times a day for a month even though most of them are suffering mild cognition impairment. They showed good subjective satisfactions in their interviews that we could go on the project further to expand its applications.

The Study on Applying Ankle Joint Load Variable Lower-Knee Prosthesis to Development of Terrain-Adaptive Above-Knee Prosthesis (노면 적응형 대퇴 의족개발을 위한 발목 관절 부하 가변형 하퇴 의족 적용에 대한 연구)

  • Eom, Su-Hong;Na, Sun-Jong;You, Jung-Hwun;Park, Se-Hoon;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.883-892
    • /
    • 2019
  • This study is the method which is adapted to control ankle joint movement for resolving the problem of gait imbalance in intervals where gait environments are changed and slope walking, as applying terrain-adaptive technique to intelligent above-knee prosthesis. In this development of above-knee prosthesis, to classify the gait modes is essential. For distinguishing the stance phases and the swing phase depending on roads, a machine learning which combines decision tree and random forest from knee angle data and inertial sensor data, is proposed and adapted. By using this method, the ankle movement state of the prosthesis is controlled. This study verifies whether the problem is resolved through butterfly diagram.

Design for Stand of 'H' company in Motor Show (해외 자동차 H사를 위한 모터쇼 전시부스 디자인)

  • Suh, June-Ho
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.11a
    • /
    • pp.193-194
    • /
    • 2007
  • The Japanese 'H' motor company is the one of a few engine makers for F1 racing machine in the world. And it has a tradition and ability to make a humanoid walking robot 'Asimo'. But 'H' motor company is known as a motorcycle maker not a car in Korea. It wanted to reinforce the brand image and identity to Korean consumer. And it needed a powerful marketing tool for the brand image distinguished from other global motor companies. It demanded a stand design to show their powerful and unique identity for surpass other rivals in 2007 Seoul Motor Show. This stand for 'H' motor company in 2007 SMS has an area of 1,250m2 and located between huge domestic motor companies, K and SR. The design was planed to show its unique identity and image, overcoming its relatively small size. I designed a round-shape ceiling structures covered whole booth space for enclosure and vortical space sense. That made a strong brand image by light and sharp structures completely distinguished from other stands. And it has a main logo sign for recognizing the stand from a distance.

  • PDF

Development of Street Crossing Assistive Embedded System for the Visually-Impaired Using Machine Learning Algorithm (머신러닝을 이용한 시각장애인 도로 횡단 보조 임베디드 시스템 개발)

  • Oh, SeonTaek;Jeong, Kidong;Kim, Homin;Kim, Young-Keun
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 2019
  • In this study, a smart assistive device is designed to recognize pedestrian signal and to provide audio instructions for visually impaired people in crossing streets safely. Walking alone is one of the biggest challenges to the visually impaired and it deteriorates their life quality. The proposed device has a camera attached on a pair of glasses which can detect traffic lights, recognize pedestrian signals in real-time using a machine learning algorithm on GPU board and provide audio instructions to the user. For the portability, the dimension of the device is designed to be compact and light but with sufficient battery life. The embedded processor of device is wired to the small camera which is attached on a pair of glasses. Also, on inner part of the leg of the glasses, a bone-conduction speaker is installed which can give audio instructions without blocking external sounds for safety reason. The performance of the proposed device was validated with experiments and it showed 87.0% recall and 100% precision for detecting pedestrian green light, and 94.4% recall and 97.1% precision for detecting pedestrian red light.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Human Walking Detection and Background Noise Classification by Deep Neural Networks for Doppler Radars (사람 걸음 탐지 및 배경잡음 분류 처리를 위한 도플러 레이다용 딥뉴럴네트워크)

  • Kwon, Jihoon;Ha, Seoung-Jae;Kwak, Nojun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.550-559
    • /
    • 2018
  • The effectiveness of deep neural networks (DNNs) for detection and classification of micro-Doppler signals generated by human walking and background noise sources is investigated. Previous research included a complex process for extracting meaningful features that directly affect classifier performance, and this feature extraction is based on experiences and statistical analysis. However, because a DNN gradually reconstructs and generates features through a process of passing layers in a network, the preprocess for feature extraction is not required. Therefore, binary classifiers and multiclass classifiers were designed and analyzed in which multilayer perceptrons (MLPs) and DNNs were applied, and the effectiveness of DNNs for recognizing micro-Doppler signals was demonstrated. Experimental results showed that, in the case of MLPs, the classification accuracies of the binary classifier and the multiclass classifier were 90.3% and 86.1%, respectively, for the test dataset. In the case of DNNs, the classification accuracies of the binary classifier and the multiclass classifier were 97.3% and 96.1%, respectively, for the test dataset.

A Study on Infra-Technology of RCP Interaction System

  • Kim, Seung-Woo;Choe, Jae-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1121-1125
    • /
    • 2004
  • The RT(Robot Technology) has been developed as the next generation of a future technology. According to the 2002 technical report from Mitsubishi R&D center, IT(Information Technology) and RT(Robotic Technology) fusion system will grow five times larger than the current IT market at the year 2015. Moreover, a recent IEEE report predicts that most people will have a robot in the next ten years. RCP(Robotic Cellular Phone), CP(Cellular Phone) having personal robot services, will be an intermediate hi-tech personal machine between one CP a person and one robot a person generations. RCP infra consists of $RCP^{Mobility}$, $RCP^{Interaction}$, $RCP^{Integration}$ technologies. For $RCP^{Mobility}$, human-friendly motion automation and personal service with walking and arming ability are developed. $RCP^{Interaction}$ ability is achieved by modeling an emotion-generating engine and $RCP^{Integration}$ that recognizes environmental and self conditions is developed. By joining intelligent algorithms and CP communication network with the three base modules, a RCP system is constructed. Especially, the RCP interaction system is really focused in this paper. The $RCP^{interaction}$(Robotic Cellular Phone for Interaction) is to be developed as an emotional model CP as shown in figure 1. $RCP^{interaction}$ refers to the sensitivity expression and the link technology of communication of the CP. It is interface technology between human and CP through various emotional models. The interactive emotion functions are designed through differing patterns of vibrator beat frequencies and a feeling system created by a smell injection switching control. As the music influences a person, one can feel a variety of emotion from the vibrator's beats, by converting musical chord frequencies into vibrator beat frequencies. So, this paper presents the definition, the basic theory and experiment results of the RCP interaction system. We confirm a good performance of the RCP interaction system through the experiment results.

  • PDF