• Title/Summary/Keyword: walking load

Search Result 121, Processing Time 0.026 seconds

Sport biomechanical comparative analyses between general sporting shoe and functional walking shoe (보행용 전문 신발과 일반 운동화의 운동역학적 비교 분석)

  • Choi, Kyoo-Jeong;Kwon, Hee-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.161-173
    • /
    • 2003
  • This study was performed to investigate the kinematic and kinetic differences between functional walking shoe(FWS) and general sports shoe(GSS). The subjects for this study were 4 male adults who had the walking pattern of rearfoot strike with normal feet. The movement of one lower leg was measured using force platform and 3 video cameras while the subjects walked at the velocity of 2/1.5 m/s. The findings of this study were as follows 1. The angle of lower leg-ground and angle of knee with FWS was greater than with GSS at the moment of strike the floor and the moment of second peak ground reaction force. The decreasing rate of angle of ankle was smaller in FWS from the strike phase to the second peak ground reaction force. These mean upright walking and round walking along the shoe surface. 2. The maximal Increased angle of Achilles tendon and the minimal decreased angle of rearfoot were smaller in FWS very significantly(p<0.001). Thus FWS prevent the excessive pronation of ankle and have good of rear-foot control. 3. The vortical ground reaction force and the rate of it to the BW were smaller in FWS statistically(p<0.001). The loading rate was smaller in FWS, too, and thess represent the reduction of load on ankle joint and prevention of injuries on it.

Lower-limb Exoskeleton Testbed for Level Walking with Backpack Load (평지 보행을 위한 하지 근력증강 로봇 테스트베드)

  • Seo, Changhoon;Kim, Hong-chul;Wang, Ji-Hyeun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.309-315
    • /
    • 2015
  • This paper presents a lower-limb exoskeleton testbed and its control method. An exoskeleton is a wearable robotic system that can enhance wearer's muscle power or assist human's movements. Among a variety of its applications, especially for military purpose, a wearable robot can be very useful for carrying heavy loads during locomotion by augmenting soldiers' mobility and endurance. The locomotion test on a treadmill was performed up to maximum 4km/h walking speed wearing the lower-limb exoskeleton testbed with a 45kg backpack load.

Simulation Based for Intelligent Control System of Multi - Humanoid Robots for Stable Load Carrying (시뮬레이션에 기반한 휴머노이드 로봇 두 대의 안정적인 물체 운반 및 제어 연구)

  • Kim, Han-Guen;Kim, Hyung-Jean;Park, Won-Man;Kim, Yoon-Hyuk;Kim, Dong-Han;An, Jin-Ung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • This paper proposes an intelligent PID/Fuzzy control system for two humanoid robots to transport objects stably. When a robot transports an object while walking, a whole body system of a robot may not be stable due to vibration or external factors from a different departure speed error and a body movement of walking robots. Therefore, it is necessary to measure the horizontal and vertical locations and speeds of object, then calibrate the difference of departure speed between robots with PID/Fuzzy control. The results of simulation with two robots indicated that a proposed controller makes robots to transport an object stably.

Evolution of Human Locomotion: A Computer Simulation Study (인류 보행의 진화: 컴퓨터 시뮬레이션 연구)

  • 엄광문;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

The Effects of Asymmetric Bag Carrying during Walking on Plantar Pressure (보행 시 비대칭성 가방 휴대가 족저압에 미치는 영향)

  • Park, Soo-Jin;Lee, Jung-Ho;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.4
    • /
    • pp.459-469
    • /
    • 2012
  • PURPOSE: The purpose of the present study was to examine changes caused by asymmetric bag carrying methods to carry the bag with one shoulder only to plantar pressure during walking. METHODS: Twenty three normal adults without any gait problem participated in the present study. Experimental conditions used consisted of walking without carrying any bag(condition 1), walking wearing a bag on both shouders (condition 2), and walking wearing a bag on the right shoulder(condition 3) and the weight of the bag was set to 15% of each subject's body weight. All the subjects were instructed to participate in all experiments under these three conditions and plantar pressures were measured from the subjects' right and left feet using an F-scan system while the subjects were walking under the three conditions. To analyze the measured plantar pressure, the sole was divided into seven areas (Hallux, Toe, Met1, Met23, Met45, Mid foot and Heel) and maximum plantar pressures in individual areas were measured. RESULTS: The results of measurement of plantar pressures under three walking conditions did not show significant changes in any areas of the left and right feet except for the mid foot area of the right food. The asymmetry between the left and right feet was examined and the results showed significant differences only in area Met23 under condition 2 and did not show significant differences in any other areas. CONCLUSION: On comprehensively considering the results of the present study, it could be seen that asymmetric bag carrying did not have large effects on changes in plantar pressure during walking compared to symmetric carrying. The reason for this is considered to be posture adjusting mechanisms against load positions.

The Effects of Arithmetic Task Difficulty level as a Dual Task on the Gait in Post-stroke Patient (뇌졸중 환자에서 이중 과제로서의 산술 과제 난이도가 보행에 미치는 영향)

  • Kim, Min-Suk;Goo, Bong-Oh
    • PNF and Movement
    • /
    • v.7 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • Many daily activities require people to complete a motor task while walking. Substantial gait decrements during simultaneous attention to a variety of cognitive tasks have been shown by a group of severely injured neurological patients of mixed etiology. And previous studies have shown that the attentional load of a walking-associated task increased with its level of difficulty. The purpose of this study was to analyze subjects' gait changes are affected by the effects of arithmetic task difficulty and performance level. Participants performed a walking task alone, three different Arithmetic tasks while seated, and among them, two kinds of the simillar Arithmetic tasks in combination with walking. Reaction time and accuracy were recorded for two of the Arithmetic tasks. The mean values of the gait were measured using a Timed Up and Go test among 11 with post-stroke patients while walking with and without forward counting (WFC) and backward counting(WBC).There was significant Arithmetic Task Difficulty level between the 10-forward counting task condition(FC) and the 10-backward counting task condition(BC)(p=0.008). The mean values of T.U.G time were significantly higher under backward counting dual-task condition than during a simple walking task(p=0.009) and WFC(p=0.009). The change in T.U.G time during WFC was higher when compared with the change during a simple walking, but there was no significant difference (p=0.246). This study suggesting that a high interference could be linked with a high level of difficulty, whereas adaptive task enabled participants to perfectly share their attention between two concurrent tasks. Future research should determine whether dual task training can reduce gait decrements in dual task situations in people after stroke. And the dual-task-based exercise program is feasible and beneficial for improving walking ability in subjects with stroke.

  • PDF

Optimal Force Distribution for Compliance Control of Multi-legged Walking Robots (다각 보행로보트의 순응 제어를 위한 힘의 최적 분배)

  • Ra, In-Hwan;Yang, Won-Young;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.874-876
    • /
    • 1995
  • Force and compliance control has been used in the control of legged walking vehicles to achieve superior terrain adaptability on rough terrains. The compliance control requires distribution of the vehicle load over the supporting legs. However, the constraint equations for ground reaction forces of supporting legs are generally underdetermined, allowing an infinite number of solutions. Thus, it is possible to apply an optimization criteria in solving the force setpoint problem. It has been observed that the previous force setpoint optimization methods sometimes cause a system stability problem and/or the load distribution among supporting legs is not well balanced due to a memory effect on the solution trajectory, This paper presents an iterative force setpoint method to solve this problem using an interpolation technique. By simulation it was shown that an excessive load unbalance among supporting legs and the memory effect in the force trajectory are alleviated much with the proposed method.

  • PDF

Parameter Analysis Method for Terrain Classification of the Legged Robots (보행로봇의 노면 분류를 위한 파라미터 분석 방법)

  • Ko, Kwang-Jin;Kim, Ki-Sung;Kim, Wan-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • Terrain recognition ability is crucial to the performance of legged robots in an outdoor environment. For instance, a robot will not easily walk and it will tumble or deviate from its path if there is no information on whether the walking surface is flat, rugged, tough, and slippery. In this study, the ground surface recognition ability of robots is discussed, and to enable walking robots to recognize the surface state and changes, a central moment method was used. The values of the sensor signals (load cell) of robots while walking were detected in the supported section and were analyzed according to signal variance, skewness, and kurtosis. Based on the results of such analysis, the surface state was detected and classified.

Effect of Surface Profiles on Pavement Fatigue Life (포장 프로파일이 포장 피로수명에 미치는 영향 분석)

  • Park, Dae-Wook;An, Deok-Soon;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.167-174
    • /
    • 2009
  • The simulation of dynamic load was conducted based on surface profile on asphalt concrete pavement, vehicle speeds, and suspension types using a truck simulation program. The results of the simulated dynamic load based on different surface profile, vehicle speeds, and suspension types are analyzed. As pavement roughness and vehicle speed are increased, the dynamic load was increased. Walking beam suspension produces greater dynamic load than air spring suspension. Pavement damage index is calculated based on covariance of dynamic load and Paris-Erdogan fracture parameter, n which is based on creep compliance tests of asphalt mixtures used in Korea. The higher covariance of dynamic load, confidence level, and fracture parameter are used, the greater pavement damage index is obtained. Specification of pavement roughness can be developed in various vehicle speeds and asphalt mixtures, and pay factor can be determined after constructing asphalt concrete pavement using pavement damage concepts.

  • PDF

Performance Evaluation of Floor Vibration of Biaxial Hollow Slab Subjected to Walking Load (보행하중에 대한 2방향 중공슬래브의 진동성능 평가)

  • Kim, Min-Gyun;Park, Hyun-Jae;Lee, Dong-Guen;Hwang, Hyun-Sik;Kim, Hyun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.11-21
    • /
    • 2009
  • Considering that the weight of a biaxial hollow slab system is not increased with an incremental increase in its thickness, and that the flexural stiffness of a biaxial hollow slab is not significantly lower than that of a general solid slab, there has been a growing need for biaxial hollow slab systems, because long span structures are in great demand. In a long span structure, the problem of vibration of floor slabs frequently occurs, and the dynamic characteristics of a biaxial hollow slab system are quite different from the conventional floor systems. Therefore, in this study, the floor vibration of a biaxial hollow slab system subjected to walking load is investigated in comparison with a conventional floor slab system. For the efficiency of time history analysis, an equivalent plate slab model that can precisely represent the dynamic behavior of a biaxial hollow slab system is used. From the analytical results, it was determined that vibration of a biaxial hollow slab system subjected to walking load is evaluated as "office-level vibration," according to the classifications of the architectural institute of Japan and ANSI.