• Title/Summary/Keyword: wake prediction

Search Result 138, Processing Time 0.024 seconds

Hybrid RANS and Potential Based Numerical Simulation for Self-Propulsion Performances of the Practical Container Ship

  • Kim, Jin;Kim, Kwang-Soo;Kim, Gun-Do;Park, Il-Ryong;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • The finite volume based multi-block RANS code, WAVIS developed at MOERI is applied to the numerical self-propulsion test. WAVIS uses the cell-centered finite volume method for discretization of the governing equations. The realizable $k-{\epsilon}$ turbulence model with a wall function is employed for the turbulence closure. The free surface is captured with the two-phase level set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. The propeller forces are obtained using an unsteady lifting surface method based on potential flow theory. The numerical procedure followed the self-propulsion model experiment based on the 1978 ITTC performance prediction method. The self-propulsion point is obtained iteratively through balancing the propeller thrust, the ship hull resistance and towing force that is correction for Reynolds number difference between the model and full scale. The unsteady lifting surface code is also iterated until the propeller induced velocity is converged in order to obtain the propeller force. The self-propulsion characteristics such as thrust deduction, wake fraction, propeller efficiency, and hull efficiency are compared with the experimental data of the practical container ship. The present paper shows that hybrid RANS and potential flow based numerical method is promising to predict the self-propulsion parameters of practical ships as a useful tool for the hull form and propeller design.

Predicting Mental Health Risk based on Adolescent Health Behavior: Application of a Hybrid Machine Learning Method (청소년 건강행태에 따른 정신건강 위험 예측: 하이브리드 머신러닝 방법의 적용)

  • Eun-Kyoung Goh;Hyo-Jeong Jeon;Hyuntae Park;Sooyol Ok
    • Journal of the Korean Society of School Health
    • /
    • v.36 no.3
    • /
    • pp.113-125
    • /
    • 2023
  • Purpose: The purpose of this study is to develop a model for predicting mental health risk among adolescents based on health behavior information by employing a hybrid machine learning method. Methods: The study analyzed data of 51,850 domestic middle and high school students from 2022 Youth Health Behavior Survey conducted by the Korea Disease Control and Prevention Agency. Firstly, mental health risk levels (stress perception, suicidal thoughts, suicide attempts, suicide plans, experiences of sadness and despair, loneliness, and generalized anxiety disorder) were classified using the k-mean unsupervised learning technique. Secondly, demographic factors (family economic status, gender, age), academic performance, physical health (body mass index, moderate-intensity exercise, subjective health perception, oral health perception), daily life habits (sleep time, wake-up time, smartphone use time, difficulty recovering from fatigue), eating habits (consumption of high-caffeine drinks, sweet drinks, late-night snacks), violence victimization, and deviance (drinking, smoking experience) data were input to develop a random forest model predicting mental health risk, using logistic and XGBoosting. The model and its prediction performance were compared. Results: First, the subjects were classified into two mental health groups using k-mean unsupervised learning, with the high mental health risk group constituting 26.45% of the total sample (13,712 adolescents). This mental health risk group included most of the adolescents who had made suicide plans (95.1%) or attempted suicide (96.7%). Second, the predictive performance of the random forest model for classifying mental health risk groups significantly outperformed that of the reference model (AUC=.94). Predictors of high importance were 'difficulty recovering from daytime fatigue' and 'subjective health perception'. Conclusion: Based on an understanding of adolescent health behavior information, it is possible to predict the mental health risk levels of adolescents and make interventions in advance.

Hybrid Scheme of Data Cache Design for Reducing Energy Consumption in High Performance Embedded Processor (고성능 내장형 프로세서의 에너지 소비 감소를 위한 데이타 캐쉬 통합 설계 방법)

  • Shim, Sung-Hoon;Kim, Cheol-Hong;Jhang, Seong-Tae;Jhon, Chu-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.166-177
    • /
    • 2006
  • The cache size tends to grow in the embedded processor as technology scales to smaller transistors and lower supply voltages. However, larger cache size demands more energy. Accordingly, the ratio of the cache energy consumption to the total processor energy is growing. Many cache energy schemes have been proposed for reducing the cache energy consumption. However, these previous schemes are concerned with one side for reducing the cache energy consumption, dynamic cache energy only, or static cache energy only. In this paper, we propose a hybrid scheme for reducing dynamic and static cache energy, simultaneously. for this hybrid scheme, we adopt two existing techniques to reduce static cache energy consumption, drowsy cache technique, and to reduce dynamic cache energy consumption, way-prediction technique. Additionally, we propose a early wake-up technique based on program counter to reduce penalty caused by applying drowsy cache technique. We focus on level 1 data cache. The hybrid scheme can reduce static and dynamic cache energy consumption simultaneously, furthermore our early wake-up scheme can reduce extra program execution cycles caused by applying the hybrid scheme.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF

Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number (저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성)

  • Song, Chang Geun;Seo, Il Won;Kim, Tae Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2267-2275
    • /
    • 2013
  • Existing conventional model for analysis of shallow water flow just assumed the internal boundary condition as free-slip, which resulted in the wrong prediction about the velocity, vorticity, water level, shear stress distribution, and time variation of drag and lift force around a structure. In this study, a finite element model that can predict flow characteristics around the structure accurately was developed and internal boundary conditions were generalized as partial slip condition using slip length concept. Laminar flow characteristics behind circular cylinder were analyzed by varying the internal boundary conditions. The simulation results of (1) time variations of longitudinal and transverse velocities, and vorticity; (2) wake length; (3) vortex shedding phenomena by slip length; (4) and mass conservation showed that the vortex shedding had never observed and laminar flow like creeping motion was occurred under free-slip condition. Assignment of partial slip condition changed the velocity distribution on the cylinder surface and influenced the magnitude of the shear stress and the occurrence of vorticity so that the period of vortex shedding was reduced compared with the case of no slip condition. The maximum mass conservation error occurred in the case of no slip condition, which had the value of 0.73%, and there was 0.21 % reduction in the maximum mass conservation error by changing the internal boundary condition from no slip to partial slip condition.

Current Status of Response to Digital Child Sexual Slavery and Comparative Analysis of Overseas Crime Prediction System Using Artificial Intelligence (디지털 아동 성착취 대응현황과 해외 인공지능 범죄 예측 시스템 비교분석)

  • Kim, Hyejin
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.357-368
    • /
    • 2020
  • This study identifies the aspects and characteristics of 'Digital Sexual Crimes' that changed rapidly in recent years. It has identified the so-called "Telegram sexual harassment and exploitation" incident on the front page. We also want to analyze this and draw up policy suggestions that can help prepare social measures. In the wake of the Telegram sexual exploitation scandal, The National Assembly is quickly proposing related bills. However, the reality is that even a clear concept and definition of "Digital sexual Crimes" have not been made yet. The effective support system for victims is also insufficient. Therefore, this paper examines the definition and concept of child sexual exploitation and harassment. We will look at the features, causes, and conditions. In addition, it will examine the current status of Digital Sexual Crimes distribution and deletion of domestic, foreign platforms. Major foreign countries, including the U. S. A. refer to cases in which big data and artificial intelligence technologies are actively used to protect victims and track perpetrators.

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.