• Title/Summary/Keyword: voxel

Search Result 408, Processing Time 0.029 seconds

Effects of the cone-beam computed tomography protocol on the accuracy and image quality of root surface area measurements: An in vitro study

  • Chanikarn Intarasuksanti;Sangsom Prapayasatok;Natnicha Kampan;Supassara Sirabanchongkran;Pasuk Mahakkanukrauh;Thanapat Sastraruji;Pathawee Khongkhunthian;Kachaphol Kuharattanachai;Kanich Tripuwabhrut
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.325-333
    • /
    • 2023
  • Purpose: The objective of this study was to evaluate and compare the accuracy and image quality of root surface area (RSA) measurements obtained with various cone-beam computed tomography (CBCT) protocols, relative to the gold standard of micro-computed tomography (CT), in an in vitro setting. Materials and Methods: Four dry human skulls were scanned using 8 different protocols, with voxel sizes of 0.15 mm, 0.3 mm, and 0.4 mm. Three-dimensional models of the selected teeth were constructed using CBCT and microCT protocols, and the RSA was automatically measured by the image-processing software. The absolute difference in the percentage of the RSA(%ΔRSA) was calculated and compared across the 8 CBCT protocols using repeatedmeasures analysis of variance. Finally, image quality scores of the RSA measurements were computed and reported in terms of percent distribution. Results: No significant differences were observed in the %ΔRSA across the 8 protocols (P>0.05). The deviation in %ΔRSA ranged from 1.51% to 4.30%, with an increase corresponding to voxel size. As the voxel size increased, the image quality deteriorated. This decline in quality was particularly noticeable at the apical level of the root, where the distribution of poorer scores was most concentrated. Conclusion: Relative to CBCT protocols with voxel sizes of 0.15mm and 0.3mm, the protocols with a voxel size of 0.4 mm demonstrated inferior image quality at the apical levels. In spite of this, no significant discrepancies were observed in RSA measurements across the different CBCT protocols.

A Study on BWMS Installation for a Ship without CAD Data (설계 데이터가 손실된 선박에 대한 BWMS 설치 계획 연구)

  • Jeon, Songkwun;Choi, Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • After 2017 years, BWMS units must be installed in the existing ship as well as the new ship by the ballast water management convention. Software tools that can help automatically searching for BWMS installation space to avoid pipes and equipment in the engine room of the existing ship will be very useful in the BWMS layout design. In this study, voxel representation of scanned data is generated first to search space efficiently. Simplified voxel models of each unit are prepared to be located in the engine room space as well. Distance between connected models is calculated through the arrangement direction and position of each model. Sums of distance between connected models are compared for the optimal configuration. It is assumed that the sum of distance between connected models depicts the pipe usage. The proposed method can save the time needed for BWMS installation design and allows optimal configuration of BWMS units.

Evaluation of the medical staff effective dose during boron neutron capture therapy using two high resolution voxel-based whole body phantoms

  • Golshanian, Mohadeseh;Rajabi, Ali Akbar;Kasesaz, Yaser
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1505-1512
    • /
    • 2017
  • Because accelerator-based boron neutron capture therapy (BNCT) systems are planned for use in hospitals, entry into the medical room should be controlled as hospitals are generally assumed to be public and safe places. In this paper, computational investigation of the medical staff effective dose during BNCT has been performed in different situations using Monte Carlo N-Particle (MCNP4C) code and two voxel based male phantoms. The results show that the medical staff effective dose is highly dependent on the position of the medical staff. The results also show that the maximum medical staff effective dose in an emergency situation in the presence of a patient is ${\sim}25.5{\mu}Sv/s$.

Voxel-Based Morphometry Study of Gray Matter Abnormalities in Neurodegenerative Disease with Obsessive-Compulsive Behaviors

  • Lee, Kang Joon;Miller, Bruce L.
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Objectives : Obsessive-compulsive(OC) symptoms have yet to be directly studied in neurodegenerative conditions involving behavioral changes. To examine regional abnormalities in the brains of dementia patients with OC symptoms, we assessed the gray matter density using voxel-based morphometry(VBM). Methods : We performed brain magnetic resonance imaging(MRI) with VBM analysis in 106 dementia patients with OC behaviors. In this study, OC behaviors were investigated in patients with neurodegenerative disease using the modified Manchester Behavior Questionnaire. Results : The OC behavior scores were correlated with structural brain volume using VBM. The total OC symptom score correlated negatively with the volume of both putamens, the right middle orbitofrontal gyrus, both anterior cingulate cortices, and the left insula(p<0.001, uncorrected). No gray matter reductions were associated specifically with the OC symptom sub-categories. Conclusions : Our results suggest that abnormalities in these brain regions may play an important role in the pathophysiology of OCD in neurodegenerative disease. This is the first lesion study to investigate the neural basis of OCD behaviors in neurodegenerative disease.

  • PDF

AR based ornament design system for 3D printing

  • Aoki, Hiroshi;Mitanin, Jun;Kanamori, Yoshihiro;Fukui, Yukio
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality) 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel) for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

Complete 3D Surface Reconstruction from an Unstructured Point Cloud of Arbitrary Shape by Using a Bounding Voxel Model (경계 복셀 모델을 이용한 임의 형상의 비조직화된 점군으로부터의 3 차원 완전 형상 복원)

  • Li Rixie;Kim Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.906-915
    • /
    • 2006
  • This study concerns an advanced 3D surface reconstruction method that the vertices of surface model can be completely matched to the unstructured point cloud measured from arbitrary complex shapes. The concept of bounding voxel model is introduced to generate the mesh model well-representing the geometrical and topological characteristics of point cloud. In the reconstruction processes, the application of various methodologies such as shrink-wrapping, mesh simplification, local subdivision surface fitting, insertion of is isolated points, mesh optimization and so on, are required. Especially, the effectiveness, rapidity and reliability of the proposed surface reconstruction method are demonstrated by the simulation results for the geometrically and topologically complex shapes like dragon and human mouth.

Advanced Color Consistency Method for Improving Voxel Coloring Performance (복셀 칼라링 성능 향상을 위한 개선된 칼라 일치성 기법)

  • Chun Young-Ju;Jeong Seung-Do;Choi Byung-Uk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.622-626
    • /
    • 2005
  • Voxel Coloring is one of the well known methods to reconstruct three dimensional shape from calibrated two dimensional multiple-view images. This paper proposes an advanced Voxel Coloring to complement drawbacks of previous color consistency tests. We propose an adaptive threshold using double threshold and an weight component to test color consistency. From the reconstruction experiment, we have verified that our proposed method outperforms the previous one.

  • PDF

Development of 7-Year-Old Korean Child Model for Computational Dosimetry

  • Lee, Ae-Kyoung;Byun, Jin-Kyu;Park, Jin-Seo;Choi, Hyung-Do;Yun, Jae-Hoon
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.237-239
    • /
    • 2009
  • A whole-body voxel model of a 7-year-old male volunteer was developed from 384 axial magnetic resonance images (MRIs). The MRIs were acquired with intervals of 3 mm for the entire body in a body coil. In order to reduce the MRI acquisition time for the child, the repetition and echo times under T1 weighted image were chosen to be 566 ms and 8 ms, respectively. The MRIs were classified according to 30 types of tissues with known electrical parameters. The developed voxel model was adjusted to the physical average of 7-year-old Korean boys. The body weight of the adjusted model, calculated with the mass tissue densities, is within a 6% difference from the 50th percentile weight.

  • PDF

Fast Computation of Projection Image Based on the Repeated Patterns of Intersection between Ray and Voxel (Ray와 Voxel 교차 길이 반복성 기반 고속 Projection 영상 생성 기법)

  • Lee, Hyunjeong;Kim, Jeongtae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.942-948
    • /
    • 2017
  • Ray-tracing based method for computing projection image calculates the exact amounts of the intersection between voxels and a ray. Among several different implementations of the ray tracing based methods, Siddon's method is the earliest one. Later faster implementation such as Jacobs's method, Zhao's method, were investigated. To our knowledge, Zhao's method is the fastest one among these. We improve the speed of the Zhao's method by predicting the number of the same intersection length between voxel and a ray. In our experiment, the proposed method showed significantly faster computation speed than Zhao's method.

Development of Contour Offset Algorithm(COA) in nRP Process for Fabricating Nano-precision Features (복셀 차감법에 의한 나노 복화공정 정밀화)

  • 임태우;박상후;양동열;이신욱;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.160-166
    • /
    • 2004
  • In this study, a new algorithm, named as Contour Offset Algorithm(COA) is developed to fabricate precise features or patterns in the range of several micrometers by nano replication printing(nRP) process. In the nRP process, a femto-second laser is scanned on a photosensitive monomer resin in order to induce polymerization of the liquid monomer according to a voxel matrix which is transformed from the bitmap format file. After polymerization, a droplet of ethanol is dropped to remove the unnecessary remaining liquid resin and then only the polymerized figures with nano-scaled precision are remaining on the glass plate. To obtain more precise replicated features, the contour lines in voxel matrix should be modified considering a voxel size. In this study, the efficiency of the proposed method is shown through two examples in view of accuracy.