• Title/Summary/Keyword: vortex motion

Search Result 249, Processing Time 0.025 seconds

Atomization of Liquid Via a Combined System of Air Pressure and Electric Field (공기 압력과 전기장이 접목된 액적 분무에 관한 연구)

  • Hwang, Sangyeon;Seong, Baekhoon;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.2
    • /
    • pp.9-12
    • /
    • 2014
  • Conventional electrospray and air spray methods have the vulnerabilities of limited flow rate (throughput) and droplet size, respectively. Since high throughput with uniform size of droplet is required for various applications, an improved technique should be adopted. Here, we report a combined system of an air pressure and an electric field and evaluate the atomization performance of it. The air flow allowed applying high flow rate range and the electric field reinforced the atomization process to generate fine droplets. A correlation between two forces was investigated by comparing the droplet produced by each method. The atomized droplets were measured and visualized by image processing and a particle image velocimetry (PIV). The quantitative results were achieved from the parametric space and the effect of both forces was analyzed. The motion of charged droplets followed the outer electric field rather than the complex vortex in the shear layer so that the droplets accelerated directly toward the grounded collector.

Numerical Analysis of Laminar Flows in the Two Dimensional Sector Cavity by Finite Analytic Method in Polar Coordinate System (極座標系 有限解析法 에 의한 2次元 부채꼴 캐비티 의 層流流動 解析)

  • 배주찬;강신영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.185-194
    • /
    • 1984
  • The finite analytic method is extended to solve the steady two dimensional Navier-Stokes equation of stream functions and vorticity in polar coordinate system. The method is applied to calculate laminar flows in a sector cavity where the motion is induced by the rotation of the outer wall. Numerical solutions are obtained in the range of Reynolds number 0 to 5000 and aspect ratios 0.50, 1.20, 1.60 and 1.92. The finite analytic method is verfied to be accurate and fast convergent at high Reynolds numbers. It is promising as a numerical method of viscous flows and heat transfer. Flows in sector cavities show different flow structures and formation of secondary vortex with aspect ratios and Reynolds numbers in comparison with rectangular cavities.

Geometry Effects of Capillary on the Evaporation from the Meniscus (모세관 단면 형상에 따른 계면 및 증발 특성)

  • Choi, Choong-Hyo;Jin, Songwan;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.313-319
    • /
    • 2007
  • The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries is much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four comers.

Characteristics of Turbulent Nonpremixed Jet Flame in Cross Air Flow (주유동에 수직으로 분사되는 난류 비예혼합 분류 화염의 특성)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2002
  • An experimental study on the characteristics of stability of propane turbulent nonpremixed jet flames discharged normal to air free-streams with uniform velocity profile is conducted. Experimental observations are focused on the flame shape, the stability considering two kinds of flame, lift-off distance, and the flame length according to velocity ratio. In order to investigate the mixing structure of the flame base at the lower limit, we employ the RMS technique and measure the species concentration by a gas chromatography. In the results of the stability curve and lifted flame, it is fecund that the dependency of nozzle diameter is closely related to the large-scale vortical structure representing counter-rotating vortices pair. Also, the detailed discussion on the phenomenon of blowout due to this large vortical motion, is provided.

Numerical Study of Flow Around an Oscillating Sphere (진동하는 구 주위의 유동에 관한 수치적 연구)

  • Lee, Jin-Woog;Lee, Dae-Sung;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.767-772
    • /
    • 2010
  • The incompressible viscous flow past a sphere under forced oscillation is numerically investigated at a Reynolds number of 300. The immersed boundary method is used to handle the sphere oscillating vertically to the streamwise direction. There are two important variables to characterize the oscillating state of a sphere. One is an oscillating amplitude normalized by the sphere diameter is set as a fixed number of 0.2. Another is the frequency ratio which is defined by $f_e/f_o$, where fe and fo are the excited frequency and the natural frequency of vortex shedding for the stationary sphere. In this study, three different frequency ratios of 0.8, 1.0 and 1.2 are considered. The results show a periodic flow with hairpin vortices shedding from upper and lower positions as well as vortical legs obliquely extended by oscillating motion of sphere. The enveloping vortical structure experience rupture twice in one period of oscillation. As the frequency of oscillation is increased, the vortical legs are getting shorter and eventually the hairpin vortices are much closer to the adjacent one.

Aerodynamic stability for square cylinder with various corner cuts

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.173-187
    • /
    • 1999
  • The flow around a structure has been an important subject in wind engineering research. There are various kinds of unstable aerodynamic phenomena with regard to a bluff body. In order to understand the physical mechanism of aerodynamic and aeroelastic instability of a bluff body, the relations between the flow around structures and the motion of body with various section shapes should be investigated. Based on a series of wind tunnel tests, this paper addresses the aerodynamic stability of square cylinder with various corner cuts and attack angles in the uniform flow. The test results show that the models with corner cut produced generally better behaviour for the galloping phenomenon than the original section. However, the corner cut method can not prevent the occurrence of the vortex-induced vibration(VIV). It is also shown that as the attack angle changes, the optimum size of corner cut changes also. This means that any one specific size of corner cut which shows the best aerodynamic behaviour throughout all the cases of attack angles does not exist. This paper presents an intensive study on obtaining the optimum size of corner cut for the stabilization of aerodynamic behaviour of cylinders.

Characteristics of Bubble-driven Flow by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble stream in a rectangular water tank is studied. The time-resolved PIV technique is adopted for the quantitative visualization and analysis. 488 nm Ar-ion CW laser is used for illumination and orange fluorescent ($\lambda_{ex}=540nm,\;\lambda_{em}=560nm$) particle images are acquired by a PCO 10bit high-speed CCD camera (1280$\times$1024). To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is 3 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by time-resolved POD analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortex structures moving along with large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy.

Large Eddy Simulation of a High Subsonic Jet and Noise Generation

  • Fukuda, Yuya;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.612-621
    • /
    • 2008
  • For the purpose of improving accuracy in jet noise prediction and investigating its generation mechanism, high subsonic jets were computed by using compressible Large Eddy Simulation(LES), wherein the inflow forcing or disturbance added in the inflow shear layer was incorporated. The far-field Sound Pressure Levels(SPL) as well as the flow field resulted in good agreement with available experimental data by applying only the high azimuthal modes among the inflow forcing parameters. We found that this result was due to an important role of the inflow forcing upon breaking down the axiymmetric vortices that caused high amplitude velocity and pressure fluctuations. In order to examine generation mechanism of the dominant noise component, wavelet transformation was introduced to reveal the presence of a well-organized structure of pressure fluctuations that originated mainly from vortex motions near the end of the jet potential core. This structure took a train of alternately positive and negative wavelet-transformed pressure regions along the jet distance, spreading towards the downstream with advection and propagation. It was concluded that this structure and its dynamic motion are the reason why a high subsonic jet produces the dominant noise with a particular downstream directivity.

  • PDF

Injection of a Denser Fluid into a Rotating Cylindrical Container Filled with Homogeneous Lighter Fluid (균질의 회전유체에 고밀도유체 주입실험)

  • 나정열;황병준
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.355-364
    • /
    • 1995
  • A heavy fluid is injected to a rotating cylindrical container of flat or inclined bottom filled with homogeneous lighter fluid. Continuous flow-in and spreading patterns over the bottom of the container are observed and at the same time upper-layer motions induced by the movement of the heavy fluid are traced by thymol blue solution. Regardless of bottom geometry, the injected denser fluid is deflected toward "western wall" and continuous its path along the boundary with radial spreading which occurs in the bottom boundary layer to make a quite asymmetric flow. When the bottom contains a slope(${\beta}$-plane), increased pressure gradient causes the fluid move faster to produce a stronger Coriolis force. This makes the width of the flow narrower than that of f-plane. But, when the denser flow reaches the southern part of the container, a local-depth of denser fluid increases (much greater than the Ekman-layer depth) such that the spreading velocity along the wall is reduced and the interfacial slope increases to make the upper-layer adjust geographically to have oppositely directed upper-layer motion along the interfacial boundary. The role of the denser fluid in terms of vorticity generation in the upper-layer is such that it produces local topographic effect over the western half of the container and also induces vortex-tube stretching which is especially dominant in the f-plane.

  • PDF

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.