• Title/Summary/Keyword: vortex lines

Search Result 35, Processing Time 0.022 seconds

How Shock Wave Interacts with a Vortex ?

  • Chang Keun-Shik;Chang Se-Myong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.1-7
    • /
    • 2004
  • When a vortex diffracts upon encountering a vortex, many strong and weak waves are produced in the course of interaction. They are the cause of shock wave attenuation and noise production. This phenomenon is fundamental to understanding the more complex supersonic turbulent Jet noise. In this paper we have reviewed the research on shock-vortex interaction we have carried on last seven years. We have computationally investigated the parameter effect. When a shock is strong, shock diffraction pattern becomes complex since the slip lines from the triple points on Mach stem curl into the vortex, causing an entropy layer. When the vortex is unstable, vortexlets are brought about each of which make shock diffraction of a reduced intensity. Strong vortex produces quadrupole noise as it impinges into a vortex. Elementary interaction models such as shock splitting, shock reflection, and shock penetration are presented based on shock tube experiment. These models are also verified by computational approach. They easily explain production and propagation of the aforementioned quadrupole noise, Diverging acoustics are explained in terms of shock-vortexlet interactions for which a computational model Is constructed.

  • PDF

A Numerical Study on the Mechanism of Lee Vortex in the Lee of Large Scale Mountain

  • Kang Sung-Dae;Kimura Fujio;Lee Hwa-Woon;Kim Yoo-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • Understanding the nonlinear flow caused by orographic effects can be valuable in siting of new businesses, industries, and transportation facilities. In spite of recent work on large-amplitude waves and wave breaking, the studies of flow around large scale mountains have just begun. The generative mechanism of lee vortices in the lee of large scale mountain is investigated by Ertel's theorem. The CSU RAMS is used as a numerical model. According to the numerical results, the isentropes are depressed behind the large scale mountains. This means the vortex lines must run upward and downward along the depression surface because vortex lines adhere to isentropic surfaces. Therefore, the vertically oriented vorticity can be formed in the lee of the large scale mountain. This vorticity plays an important role for orographic precipitation, because strong vertical velocity and cloud bands are developed along isothermal deformation surface.

  • PDF

A Numerical Study on the Mechanism of Lee Vortex in the Lee of Large Scale Mountain

  • Sung-Dae Kang;Fuj
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1992
  • Understanding the nonlinear flow caused by orographic effects can be valuable in siting of new businesses, industries, and transportation facilities. In spite of recent work on large-amplitude waves and wave breaking, the studies of flow around large scale mountains have just begun. The generative mechanism of lee vortices in the lee of large scale mountain Is investigated by Ertel's theorem. The CSU RAMS is used as a numerical model. According to the numerical results, the isentropes are depressed behind the large scale mountains. This means the vortex lines must run upward and downward along the depression surface because vortex lines adhere to isentropic surfaces. Therefore, the vertically oriented vorticity can be formed in the lee of the large scale mountain. This vorticity plays an important role for orographic Precipitation, because strong vertical velocity and cloud bandy are developed along isothermal deformation surface.

  • PDF

Wake Characteristics of High Angle of Attack and Ground Effect for Low Aspect Ratio Wings using NLVLM (비선형 와류격자법을 이용한 작은 종횡비 날개의 고받음각 및 지면효과 후류 특성 분석)

  • Lee, Seawook
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.37-41
    • /
    • 2014
  • For the analysis of lifting surface at high angle of attack, a Nonlinear Vortex Lattice Method(NLVLM) was used. The NLVLM is intented to compute the interactions between lifting surfaces and separated vertical flow. The lifting surfaces are represented by a lattice of discrete vortex rings. And wakes are represented by families of non-lintersecting, semi-infinite vortex line segments. The image method also used to analyze the ground effect. It is found that vortex lines separated from lifting surfaces represent the separated flows successfully. Although the present method is applied for the rectangular wing and delta wing, extensions can be possible for the arbitrary lifting surfaces. The Present results show good agreement with experimental data.

Analysis of Flow Characteristics in a Groove of Hydraulic Spool Valve (유압 스풀밸브 그루브 내에서의 유동특성 해석)

  • Park, T.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • All of the hydraulic spool valves adopt radially grooved spools to avoid hydraulic locking. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the accurate Poiseuille flow characteristics inside single groove. The stream lines, velocity and pressure distributions are obtained for various groove widths, depths and shapes. The stream lines are highly affected by groove shape and there occurred large vortexes inside groove beyond a certain ratio of groove width to depth. Especially the U shaped groove restrains the occurrence of vortex. Therefore the numerical method adopted in this paper can be use in optimum designing of multi-grooved hydraulic spool valves.

  • PDF

Development of Weis-Fogh Type Ship's Propulsion Mechanism Visualization and Numerical Analysis of Flowfield; (Weis-Fogh형 선박 추진기구의 개발 유동장의 가시화 및 수치해석)

  • 노기덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.426-437
    • /
    • 1993
  • The flowfield of Weis-Fogh type ship's Propulsion is visualized by numerical simulations using the discrete vortex method and by the hydrogen bubble technique. The simulations are performed by assuming that the separations occur at the trailing edge of the wing. The streak lines and time lines are calculated by introducing the tracers at adequate intervals. They agree well with experimental results. The flowfield is unsteady and complex, but the properties of the flow are clarified by numerical and experimental visualization.

Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh (직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.

Numerical Simulation of the Aeroacoustic Noise in the Separated Laminar Boundary Layer

  • Park, Hyo-Won;Young J. Moon;Lee, Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • The unsteady flow characteristics and the related noise of separated incompressible laminar boundary layer flows (Re$\sub$$\delta$/* = 614, 868, and 1,063) are numerically investigated. The characteristic lines of the wall pressure are examined to identify the primary noise source, related with the unsteady motion of the vortex at the reattachment point of the separation bubble. The generation and propagation of the vortex-induced noise in the separated laminar boundary layer are computed by the method of Computational Aero-Acoustics (CAA), and the effects of Reynolds number, Mach number and adverse pressure gradient strength are examined.

Aeroacoustic Noise Generation in Unsteady Laminar Boundary-layer Separation (비정상 층류 경계층 박리에 의한 유동 소음)

  • Choi, Hyo-Won;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.300-305
    • /
    • 2001
  • The unsteady flow structure and the related noise generation, which are caused by the separation of a two-dimensional, incompressible, laminar boundary-layer on the flat plate under the influence of local adverse pressure gradient, are numerically examined. The characteristic lines of the wall pressure are examined to understand the unsteady behavior of vortex shedding near the reattachment point of the separation bubble. Also, the generation and propagation of the vortex-induced noise in the separated boundary-layer are calculated by the method of computational aero-acoustics (CAA), and the effects of Reynolds number, Mach number and the strength of the adverse pressure gradient on the unsteady flow and noise characteristics are examined.

  • PDF