• 제목/요약/키워드: vortex lift

검색결과 222건 처리시간 0.019초

양력선 방법을 이용한 다양한 형상의 날개 공력해석에 관한 연구 (Study on the Aerodynamic Analysis for Wings with Various Shapes Using Lifting-line Methods)

  • 이창호;강형민;김철완
    • 한국항공우주학회지
    • /
    • 제41권12호
    • /
    • pp.931-939
    • /
    • 2013
  • 본 논문에서는 항공기 날개의 개념 설계에서 적용하기에 적합한 양력선 방법을 찾고 정확성과 적용범위를 분석한다. Prandtl의 양력선 이론에서 발전된 두 가지 양력선 방법으로서 얇은 익형의 가정을 갖고 3/4 시위의 제어점에서 속도경계조건을 부여하는 Weissinger방법과 3차원 와류 양력법칙을 적용한 Phillips의 방법을 택하였다. 계산 대상은 타원형 날개, 후퇴각이 있는 날개, 그리고 상반각과 비틀림이 있고 후퇴각 없는 테이퍼 날개이다. 계산을 통해 포텐셜 유동의 공력 데이터로 날개의 순환분포, 내리흐름 분포, 양력과 유도항력을 추출하여 이론식 결과 및 풍동시험 데이터와 비교하였다. Weissinger 방법은 날개의 형상에 상관없이 정확도와 신뢰성 있는 결과를 보여주지만 Phillips 방법은 후퇴각이 있는 날개에서는 부정확한 결과를 나타내었다.

Aerodynamic properties of a streamlined bridge-girder under the interference of trains

  • Li, Huan;He, Xuhui;Hu, Liang;Wei, Xiaojun
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.177-191
    • /
    • 2022
  • Trains emerging on a streamlined bridge-girder may have salient interference effects on the aerodynamic properties of the bridge. The present paper aims at investigating these interferences by wind tunnel measurements, covering surface pressure distributions, near wake profiles, and flow visualizations. Experimental results show that the above interferences can be categorized into two primary effects, i.e., an additional angle of attack (AoA) and an enhancement in flow separation. The additional AoA effect is demonstrated by the upward-moved stagnation point of the oncoming flow, the up-shifted global symmetrical axis of flow around the bridge-girder, and the clockwise-deflected orientation of flow approaching the bridge-girder. Due to this additional AoA effect, the two critical AoAs, where flow around the bridge-girder transits from trailing-edge vortex shedding (TEVS) to impinging leading-edge vortices (ILEV) and from ILEV to leading-edge vortex shedding (LEVS) of the bridge-girder are increased by 4° with respect to the same bridge-girder without trains. On the other hand, the underlying flow physics of the enhancement in flow separation is the large-scale vortices shedding from trains instead of TEVS, ILEV, and LEVS governed the upper half bridge-girder without trains in different ranges of AoA. Because of this enhancement, the mean lift and moment force coefficients, all the three fluctuating force coefficients (drag, lift, and moment), and the aerodynamic span-wise correlation of the bridge-girder are more significant than those without trains.

무한 유체에서 자유 낙하하는 원형 실린더의 2차원 운동에 관한 수치해석 (Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid)

  • 남궁각;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.713-725
    • /
    • 2004
  • The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.

Numerical Investigation of Flow-pattern and Flow-induced Noise for Two Staggered Circular Cylinders in Cross-flow by LBM

  • Kim, Jeong-Whan;Oh, Sae-Kyung;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.82-93
    • /
    • 2008
  • The flowfield behind two cylinders and flow-induced noise generated from the cylinders in various arrangement are numerically investigated based on the finite difference lattice Boltzmann model with 21 velocity bits. which is introduced a flexible specific heat ${\gamma}$ to simulate diatomic gases like air. In an isolated cylinder with two type of mesh. some flow parameters such as Strouhal number $S_t$ and acoustic pressure ${\Delta}p$ simulated from the solution are given and quantitatively compared with those provided the previous works. The effects of the center-to-center pitch ratio $L_{cc}/d=2.0$ in staggered circular cylinders as shown in Fig. 1 and angles of incidence ${\alpha}=30^{\circ}(T_{cc}/d=0.5)$, $45^{\circ}(T_{cc}/d =0.707)$ and $60^{\circ}\;(T_{cc}/d=0.866)$, respectively, are studied. Our analysis focuses on the small-scale instabilities of vortex shedding, which occurs in staggered arrangement. With the results of drag $C_d$ and lift $C_l$ coefficients and vorticity contours. the mechanisms of the interference phenomenon and its interaction with the two-dimensional vortical structures are present in the flowfields under $Re\;{\le}\;200$. The results show that we successively capture very small pressure fluctuations, with the same frequency of vortex shedding, much smaller than the whole pressure fluctuation around pairs of circular cylinders. The upstream cylinder behaves like an isolated single cylinder, while the downstream one experiences wake-induced flutter. It is expected that, therefore, the relative position of the downstream cylinder has significant effects on the flow-induce noise, hydrodynamic force and vortex shedding characteristics of the cylinders.

Dynamic Stereo PIV에 의한 델타형 날개에서의 3차원 와류 유동에 관한 연구 (Three Dimensional Vortex Behavior of LEX Delta Wing by Dynamic Stereo PIV)

  • 이현;김미영;최장운;최민선;이영호
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2003
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modern air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras$(1280pixel\times1024pixel)$ were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

와류감쇠 및 저항저감형 나선형 해양 구조물 주위 유동 LES 해석 (Large Eddy Simulation of Flow around Twisted Offshore Structure with Drag Reduction and Vortex Suppression)

  • 정재환;윤현식;최창영;전호환;박동우
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.440-446
    • /
    • 2012
  • A twisted cylinder has been newly designed by rotating the elliptic cross section along the spanwise direction in order to reduce the drag and vorticies in wake region. The flow around the twisted cylinder at a subcritical Reynolds number (Re) of 3000 is investigated to analyze the effect of twisted spiral pattern on the drag reduction and vortex suppression using large eddy simulation (LES). The instantaneous wake structures of the twisted cylinder are compared with those of a circular and a wavy cylinder at the same Re. The shear layer of the twisted cylinder covering the recirculation region is more elongated than that of the circular and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the circular and the wavy cylinder. Consequently, the mean drag coefficient and the fluctuating lift of the twisted cylinder are less than those of the circular and the wavy cylinder.

Horn Type 타(舵)와 한쌍(雙)의 타(舵)의 타직압력(舵直壓力) 계산(計算)에 관한 연구(硏究) (Calculation of the Rudder Normal Force for a Horn Type Rudder and Twin Rudder)

  • 이승건
    • 대한조선학회지
    • /
    • 제27권4호
    • /
    • pp.27-31
    • /
    • 1990
  • 양력면(揚力面)의 양력계산(揚力計算)에 흔히 쓰이고 있는 방법(方法)을 크게 나누면 Vortex Lattice 법(法)과 Mode Function법(法)이 있다. 잘 알려진 것 처럼, Vortex Lattice법(法)은 해(解)의 수렴성(收斂性)은 좋으나 계산시간(計算時間)이 많이 걸리는 문제점(問題點)이 있고, Mode Function법(法)은 계산시간(計算時間)은 짧으나 해(解)가 특이(特異)해 지는 경우가 있다. 그러므로 본(本) 논문(論文)에서는 양방법(兩方法)의 장점(長點)들을 살리도록, 양력면(揚力面)을 Span 방향(方向)으로 분할(分割)하고 각(各) Strip Mode Function을 사용하여 Vortex를 분포(分布)시켜, 양력면이론(揚力面理論)으로 양력(揚力)을 계산(計算)하였다. 우선 Horn Type의 반균형타(半均衡舵)에 본(本) 계산법(計算法)을 적용(適用)하여 타직압력(舵直壓力)을 계산(計算)하고 타(舵) 단독시험(單獨試驗)을 병행(竝行)하여 계산법(計算法)의 유용성(有用性)을 검증(檢證)하였다. 그 결과(結果), Stall과 같은 비선형적(非線形的) 유체현상(流體現象)이 일어나지 않는 한(限), 본(本) 계산법(計算法)은 유용(有用)하다는 결론(結論)을 얻었다. 끝으로, 본(本) 계산법(計算法)을 평행(平行)하게 늘어선 한척(隻)의 장방형타(長方形舵)에 적용(適用)하여 두 타(舵) 사이의 상호간섭(相互干涉)도 계산(計算)하였다.

  • PDF

축류형 흡입송풍기 설계기술에 관한 연구 (A Study of Design Method of an Axial-Type Suction Fan)

  • 최형준;김창수;조종현;조수용
    • 한국유체기계학회 논문집
    • /
    • 제13권1호
    • /
    • pp.42-51
    • /
    • 2010
  • Many different types of fan have been applying to various industrial fields. Fan design methods are much different depending on the types of fan, operating conditions, and connecting parts at the inlet or exit of the fan etc. In this study, design methods for an axial-type suction fan are studied. This fan discharges the air in the relative static pressure of -285Pa to the atmosphere with the flow rate of $960m^3/min$. For three-dimensional blade design, three different design methods were applied, such as the free vortex method, the exponential method, and the cascade method. In the cascade method, the blade loading along the radial direction was obtained from the lift coefficient which was necessary to obtain the pressure rise on a fan rotor. This method is different from the free vortex and the exponential method which control the strength of the vortex. The fan performance prediction was conducted using the CFD with three different inlet ducts. The best fan performance was obtained when the fan was designed by using the cascade method. The designed fan using the exponential method showed better performance compared to a fan designed using the free vortex method. However, the fan performance was changed depending on the installed inlet ducts. So, an efficient fan can be designed with the adjustment of design variables on the basis of the flow structures within the fan as well as the fan design procedure.

축대칭 왕복엔진의 비정상 난류유동에 대한 수치해석 (A Numerical Simulation of Unsteady Axisymmetric Turbulent Flow in a Reciprocating Engine Including Port/Valve Assembly)

  • 조진행;유홍선;최영기
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.139-149
    • /
    • 1994
  • A numerical simulation of unsteady axisymmetric turbulent flow was performed for a reciprocating engine including port/valve assembly. The governing equations based on a nonorthogonal coordinate formulation with Cartesian velocity components were used and discretised by the finite volume method with non-staggered variable arrangements. The modified $\kappa-\xi$. turbulence model which included the effect of compressibility was used. The results of twodimensional transient calculation for the axisymmetric configuration were compared with the experimental data. Although slightly low rms velocity was predicted compared to the experimental data, predicted velocity distributions at the valve exit and in-cylinder region showed good agreements with the experimental data. The flow at the valve exit was separated at the same valve lift position with the experimental data. Two vortices incylinder region were generated during the initial intake process. The clockwise main vortex became strong and moved upward to the top wall. The counter-clockwise second vortex became weak and stick to the upper left corner of the cylinder. After middle intake process, new vortex adjacent to upper cylinder wall appeared by the piston motion and therefore, the in-cylinder flow was formed into three vortices. The cylinder pressure just before bottom dead center of piston was higher than inlet pressure and then the reverse flow occured at the valve exit. The in-cylinder flow characteristics were strongly dependent on piston motion, but insensitive to valve motion.

타원형날개끝 캐비테이션과 유기소음 특성연구 - 표면거칠기의 영향 - (Study on Tip-Vortex Cavitation and Its Noise Characteristics - Effects of Surface Roughness -)

  • 현범수;이종무;최학선
    • 대한조선학회논문집
    • /
    • 제31권1호
    • /
    • pp.84-93
    • /
    • 1994
  • 본 연구에서는 NACA0012단면을 갖는 타원형날개끝 캐비테이션과 유기소음특성에 미치는 표면거칠기의 영향이 실험적으로 조사되었다. 사용한 표면거칠기는 조도 $200{\mu}m$의 입자로서, 날개끝 3cm 구간에 부착하였다. 또한 날개끝과 앞날에 각각 3cm의 거칠기를 준 경우도 별도로 조사되었다. 캐비테이션 발생시험 결과 캐비테이션 초기발생위치는 실험한 받음각 범위에서 날개끝으로부터 대략 1/2 코오드정도 후류이며, 캐비테이션 수가 감소함에 따라 변화하는 형상을 보였다. 날개끝 캐비테이션에 의한 소음은 주파수 3-50kHs사이의 비교적 고주파수에서 음압이 증가하는 양상을 보였으나, 더 낮은 캐비테이션수에서 날개 앞날 캐비테이션으로 확장되면 전 주파수 범위에 걸쳐서 소음이 증가하었다. 캐비테이션과 소음발생은 표면거칠기가 증가할때 개선되는 경향을 보였으나 그 차이는 크지않았다. 날개 앞날과 끝날에 거칠기를 준 경우가 낮은 캐비테이션수에서 다소 유리한 캐비테이션 특성을 보여준 반면 양력-항력비의 감소에 따른 문제점도 지적되었다.

  • PDF